(13分)已知函數(shù)

(1)求的反函數(shù)及反函數(shù)的定義域A;

(2)設(shè),求實數(shù)的取值范圍。

解析:(1)

                                                  2分

(其中舍去)

                                              

 的定義域A=[2,3]                 6分

(2)8分

在A上均單調(diào)遞減。

欲使 

易得故所求的取值范圍為                   13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對于任意n?N*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=
px+1
x+1
確定數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=
2
an+1
-1
,Sn為數(shù)列{dn}的前n項之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求
lim
n→∞
=
Hn
n
;
(3)已知正數(shù)數(shù)列{cn}的前n項之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年福州質(zhì)檢文)(14分)

已知是定義在R上的函數(shù),其圖象交x軸于A、B、C三點.點B的坐標(biāo)為(2,0),且的相反的單調(diào)性.

   (1)求c的值;

   (2)若函數(shù)上也有反的單調(diào)性,的圖象上是否存在一點M,使得在點M的切線斜率為3b?若存在,求出M的坐標(biāo),若不存在,請說明理由.

   (3)求|AC|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年惠州一中模擬理) 由函數(shù)確定數(shù)列,,若函數(shù)的反函數(shù) 能確定數(shù)列,則稱數(shù)列是數(shù)列的“反數(shù)列”。

(1)已知函數(shù)的反函數(shù)為,則由函數(shù)確定的數(shù)列的反數(shù)列為,求的通項公式;不等式對任意的正整數(shù)恒成立,求實數(shù)的范圍;

(2)設(shè)函數(shù)確定的數(shù)列為的反數(shù)列為,的公共項組成的數(shù)列為;求數(shù)列項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知是定義在R上的函數(shù),其圖象交x軸于A、B、C三點.點B的坐標(biāo)為(2,0),且的相反的單調(diào)性.

(1)求c的值;

(2)若函數(shù)上也有反的單調(diào)性,的圖象上是否存在一點M,使得在點M的切線斜率為3b?若存在,求出M的坐標(biāo),若不存在,請說明理由.

(3)求|AC|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.

(1)已知函數(shù)f(x)=2的反函數(shù)為f-1(x)=(x≥0),則由函數(shù)f(x)=2確定的數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項公式;不等式++…+≥1-2a對任意的正整數(shù)n恒成立,求實數(shù)a的范圍;

(2)設(shè)函數(shù)y=3x確定的數(shù)列為{cn},{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項組成的數(shù)列為{tn},求數(shù)列{tn}的前n項和Sn.

查看答案和解析>>

同步練習(xí)冊答案