【題目】已知函數(shù).(是自然對(duì)數(shù)的底數(shù))
(1)求的單調(diào)遞減區(qū)間;
(2)記,若,試討論在上的零點(diǎn)個(gè)數(shù).(參考數(shù)據(jù):)
【答案】(1).(2)見(jiàn)解析
【解析】
(1)求出導(dǎo)函數(shù),解不等式,結(jié)合三角函數(shù)的性質(zhì)可得解;
(2)求出,令,由導(dǎo)數(shù)的知識(shí)求得的單調(diào)性,然后通過(guò)討論的正負(fù)確定的單調(diào)性的極值,確定其零點(diǎn)個(gè)數(shù).
解:(1),定義域?yàn)?/span>.
.
由解得,解得.
∴的單調(diào)遞減區(qū)間為.
(2)由已知,∴.
令,則.
∵,∴當(dāng)時(shí),;
當(dāng)時(shí),,
∴在上單調(diào)遞增,在上單調(diào)遞減,
即在上單調(diào)遞增,在上單調(diào)遞減.
∵,.
①當(dāng),即時(shí),,∴.
∴,使得,
∴當(dāng)時(shí),;當(dāng)時(shí),,
∴在上單調(diào)遞增,在上單調(diào)遞減.
∵,∴.
又∵,
∴由零點(diǎn)存在性定理可得,此時(shí)在上僅有一個(gè)零點(diǎn).
②若時(shí),,
又∵在上單調(diào)遞增,在上單調(diào)遞減,又,
∴,,使得,,
且當(dāng)、時(shí),;當(dāng)時(shí),.
∴在和上單調(diào)遞減,在上單調(diào)遞增.
∵,∴.
∵,∴.
又∵,由零點(diǎn)存在性定理可得,
在和內(nèi)各有一個(gè)零點(diǎn),
即此時(shí)在上有兩個(gè)零點(diǎn).
綜上所述,當(dāng)時(shí),在上僅有一個(gè)零點(diǎn);
當(dāng)時(shí),在上有兩個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(I)若,求函數(shù)的極值和單調(diào)區(qū)間;
(II)若在區(qū)間上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,數(shù)列中的每一項(xiàng)均在集合中,且任意兩項(xiàng)不相等,又對(duì)于任意的整數(shù),均有.例如時(shí),數(shù)列為或.
(1)當(dāng)時(shí),試求滿(mǎn)足條件的數(shù)列的個(gè)數(shù);
(2)當(dāng),求所有滿(mǎn)足條件的數(shù)列的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了讓居民了解垃圾分類(lèi),養(yǎng)成垃圾分類(lèi)的習(xí)慣,讓綠色環(huán)保理念深入人心.某市將垃圾分為四類(lèi):可回收物,餐廚垃圾,有害垃圾和其他垃圾.某班按此四類(lèi)由10位同學(xué)組成四個(gè)宣傳小組,其中可回收物與餐廚垃圾宣傳小組各有2位同學(xué),有害垃圾與其他垃圾宣傳小組各有3位同學(xué).現(xiàn)從這10位同學(xué)中選派5人到某小區(qū)進(jìn)行宣傳活動(dòng),則每個(gè)宣傳小組至少選派1人的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】古希臘數(shù)學(xué)家阿波羅尼奧斯發(fā)現(xiàn):平面上到兩定點(diǎn),距離之比為常數(shù)且的點(diǎn)的軌跡是一個(gè)圓心在直線上的圓,該圓簡(jiǎn)稱(chēng)為阿氏圓.根據(jù)以上信息,解決下面的問(wèn)題:如圖,在長(zhǎng)方體中,,點(diǎn)在棱上,,動(dòng)點(diǎn)滿(mǎn)足.若點(diǎn)在平面內(nèi)運(yùn)動(dòng),則點(diǎn)所形成的阿氏圓的半徑為________;若點(diǎn)在長(zhǎng)方體內(nèi)部運(yùn)動(dòng),為棱的中點(diǎn),為的中點(diǎn),則三棱錐的體積的最小值為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)列,若存在常數(shù)M,使得對(duì)任意,與中至少有一個(gè)不小于M,則記作,那么下列命題正確的是( ).
A.若,則數(shù)列各項(xiàng)均大于或等于M;
B.若,則;
C.若,,則;
D.若,則;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天津市某學(xué)校組織教師進(jìn)行“學(xué)習(xí)強(qiáng)國(guó)”知識(shí)競(jìng)賽,規(guī)則為:每位參賽教師都要回答3個(gè)問(wèn)題,且對(duì)這三個(gè)問(wèn)題回答正確與否相互之間互不影響,若每答對(duì)1個(gè)問(wèn)題,得1分;答錯(cuò),得0分,最后按照得分多少排出名次,并分一、二、三等獎(jiǎng)分別給予獎(jiǎng)勵(lì).已知對(duì)給出的3個(gè)問(wèn)題,教師甲答對(duì)的概率分別為,,p.若教師甲恰好答對(duì)3個(gè)問(wèn)題的概率是,則________;在前述條件下,設(shè)隨機(jī)變量X表示教師甲答對(duì)題目的個(gè)數(shù),則X的數(shù)學(xué)期望為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)證明:在區(qū)間上有且僅有個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A與軸相切于點(diǎn),過(guò)點(diǎn),分別作動(dòng)圓異于軸的兩切線,設(shè)兩切線相交于,點(diǎn)的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)過(guò)的直線與曲線相交于不同兩點(diǎn),若曲線上存在點(diǎn),使得成立,求實(shí)數(shù)的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com