【題目】如圖,在三棱錐中,,為線(xiàn)段的中點(diǎn),為線(xiàn)段上一點(diǎn).

(1)求證:;

(2)求證:平面平面;

(3)當(dāng)平面時(shí),求三棱錐的體積.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).

【解析】

分析:(1)因?yàn)?/span>所以平面又因?yàn)?/span>平面,所以;(2)由等腰三角形的性質(zhì)可得 ,由(1)知,,所以平面從而平面平面;(3)先證明,結(jié)合(1)可得平面,從而可得三棱錐的體積為,進(jìn)而可得結(jié)果.

詳解(1)因?yàn)镻A⊥AB,PA⊥BC,所以PA⊥平面ABC.

又因?yàn)锽D平面ABC,所以PA⊥BD.

(2)因?yàn)锳B=BC,D為AC中點(diǎn),所以BD⊥AC.

由(1)知,PA⊥BD,所以BD⊥平面PAC,

所以平面BDE⊥平面PAC.

(3)因?yàn)镻A∥平面BDE,平面PAC平面BDE=DE,

所以PA∥DE.

因?yàn)镈為AC的中點(diǎn),所以DE=PA=l,BD=DC=.

由(1)知,PA⊥平面ABC,所以DE⊥平面ABC,

所以三棱錐E-BCD的體積V=BD·DC·DE=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)條件,求下列曲線(xiàn)的方程.

1已知兩定點(diǎn),曲線(xiàn)上的點(diǎn)距離之差的絕對(duì)值為,求曲線(xiàn)的方程;

(2)在 軸上的一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的連線(xiàn)互相垂直,且焦距為的橢圓的標(biāo)準(zhǔn)方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)軸交于,兩點(diǎn),點(diǎn)的坐標(biāo)為,當(dāng)變化時(shí),解答下列問(wèn)題:

)能否出現(xiàn)的情況?說(shuō)明理由.

)證明過(guò),三點(diǎn)的圓在軸上截得的弦長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S2=11,S5=50,則過(guò)點(diǎn)P(n,an)和Q(n+2,an+2)(n∈N*)的直線(xiàn)的一個(gè)方向向量的坐標(biāo)可以是(
A.(﹣1,﹣3)
B.(1,﹣3)
C.(1,1)
D.(1,﹣1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)試討論函數(shù)的單調(diào)性;

(2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合M={(x,y)|y=f(x)},若對(duì)于任意實(shí)數(shù)對(duì)(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,則稱(chēng)集合M具有∟性,給出下列四個(gè)集合:

①M(fèi)={(x,y)|y=x3﹣2x2+3}; ②M={(x,y)|y=log2(2﹣x)};

③M={(x,y)|y=2﹣2x}; ④M={(x,y)|y=1﹣sinx};

其中具有∟性的集合的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為紀(jì)念重慶黑山谷晉升國(guó)家5A級(jí)景區(qū)五周年,特發(fā)行黑山谷紀(jì)念郵票,從2017年11月1日起開(kāi)始上市.通過(guò)市場(chǎng)調(diào)查,得到該紀(jì)念郵票在一周內(nèi)每1張的市場(chǎng)價(jià)y(單位:元)與上市時(shí)間x(單位:天)的數(shù)據(jù)如下:

上市時(shí)間x天

1

2

6

市場(chǎng)價(jià)y元

5

2

10

(Ⅰ)分析上表數(shù)據(jù),說(shuō)明黑山谷紀(jì)念郵票的市場(chǎng)價(jià)y(單位:元)與上市時(shí)間x(單位:天)的變化關(guān)系,并判斷y與x滿(mǎn)足下列哪種函數(shù)關(guān)系,①一次函數(shù);②二次函數(shù);③對(duì)數(shù)函數(shù),并求出函數(shù)的解析式;

(Ⅱ)利用你選取的函數(shù),求黑山谷紀(jì)念郵票市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,且,)是定義在區(qū)間上的奇函數(shù),

(1)求的值和實(shí)數(shù)的值;

(2)判斷函數(shù)在區(qū)間上的單調(diào)性,并說(shuō)明理由;

(3)若成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了展示中華漢字的無(wú)窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開(kāi)展《中國(guó)漢字聽(tīng)寫(xiě)大會(huì)》的活動(dòng).為響應(yīng)學(xué)校號(hào)召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績(jī)畫(huà)出莖葉圖,如圖所示,甲的成績(jī)中有一個(gè)數(shù)的個(gè)位數(shù)字模糊,在莖葉圖中用表示.(把頻率當(dāng)作概率).

(1)假設(shè),現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計(jì)學(xué)的角度,你認(rèn)為派哪位學(xué)生參加比較合適?

(2)假設(shè)數(shù)字的取值是隨機(jī)的,求乙的平均分高于甲的平均分的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案