某人根據(jù)自己愛好,希望從{W,X,Y,Z}中選2個不同字母,從{0,2,6,8}中選3個不同數(shù)字?jǐn)M編車牌號,要求前三位是數(shù)字,后兩位是字母,且數(shù)字2不能排在首位,字母Z和數(shù)字2不能相鄰,那么滿足要求的車牌號有( 。
A、198個B、180個
C、216個D、234個
考點(diǎn):計數(shù)原理的應(yīng)用
專題:應(yīng)用題,排列組合
分析:因為2,Z都是特殊元素,故需要對此進(jìn)行分類,第一類,不選2時,第二類選2,不選Z時,第三類,先2不選Z時,根據(jù)分類計數(shù)原理可得.
解答: 解:不選2時,有
A
3
3
A
2
4
=72種,
選2,不選Z時,先排2,有
C
1
2
種,然后選擇和排列剩下兩個數(shù)字,有
C
2
3
A
2
2
種,最后選擇和排列字母,有
C
2
3
A
2
2
種,所以有
C
1
2
C
2
3
A
2
2
C
2
3
A
2
2
=72種,
選2,選Z時,2在數(shù)字的中間,有
A
2
3
C
1
2
C
1
3
=36種,當(dāng)2在數(shù)字的第三位時,
A
2
3
A
1
3
=18種,
根據(jù)分類計數(shù)原理,共有72+72+36+18=198.
故選:A.
點(diǎn)評:本題考查了分類計數(shù)原理,關(guān)鍵是分類,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若x∈A,
1
x
∈A,則稱A是“伙伴關(guān)系集合”,在集合M={-1, 0, 
1
3
, 
1
2
,1, 2, 3, 4}
的所有非空子集任選一個集合,則該集合是“伙伴關(guān)系集合”的概率為( 。
A、
1
51
B、
1
17
C、
7
255
D、
4
255

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinx(sinx+cosx)-1.
(1)求函數(shù)的最小正周期和最值;
(2)畫出函數(shù)在區(qū)間[-
π
2
π
2
]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=ax-2x+2對于1≤x≤4,f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若執(zhí)行如圖的程序框圖,則輸出的k值是( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義某種運(yùn)算?,a?b的運(yùn)算原理如圖所示:設(shè)f(x)=(0?x)x,則f(x)在區(qū)間[-2,2]上的最小值為( 。
A、-2B、-4C、2D、-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的方程:log4{2log3[1+3log2x]}=
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωx•cosωx-cos2ωx(ω>0)最小正周期為
π
2

(Ⅰ)求ω的值及函數(shù)f(x)的解析式;
(Ⅱ)若△ABC的三條邊a,b,c滿足a2=bc,a邊所對的角為A.求角A的取值范圍及函數(shù)f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0
y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為10,則a2+b2的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案