【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間
(2)若存在,使得成立,求的取值范圍.
【答案】(1)當(dāng) a≤﹣1時(shí),f(x)在(0,+∞)上是增函數(shù),當(dāng)a>﹣1時(shí),在(0,1+a)上是減函數(shù),在(1+a,+∞)上是增函數(shù);(2) (﹣∞,﹣2)∪(,+∞).
【解析】試題分析:(1)先求函數(shù)導(dǎo)數(shù),并因式分解得,按 分類(lèi)討論導(dǎo)函數(shù)符號(hào)變化規(guī)律,即得函數(shù)單調(diào)區(qū)間 (2)先將存在性問(wèn)題轉(zhuǎn)化為函數(shù)最值問(wèn)題,即 ,再利用(1)討論函數(shù)最小值: ; ;
試題解析:(1)函數(shù)f(x)=x﹣alnx+的定義域?yàn)椋?,+∞),
f′(x)=1﹣﹣=,
①當(dāng)1+a≤0,即a≤﹣1時(shí),
f′(x)>0,
故f(x)在(0,+∞)上是增函數(shù);
②當(dāng)1+a>0,即a>﹣1時(shí),
x∈(0,1+a)時(shí),f′(x)<0;x∈(1+a,+∞)時(shí),f′(x)>0;
故f(x)在(0,1+a)上是減函數(shù),在(1+a,+∞)上是增函數(shù);
(2)①當(dāng)a≤﹣1時(shí),
存在x0∈[1,e](e=2.718…),使得f(x0)<0成立可化為
f(1)=1+1+a<0,
解得,a<﹣2;
②當(dāng)﹣1<a≤0時(shí),
存在x0∈[1,e](e=2.718…),使得f(x0)<0成立可化為
f(1)=1+1+a<0,解得,a<﹣2;
③當(dāng)0<a≤e﹣1時(shí),
存在x0∈[1,e](e=2.718…),使得f(x0)<0成立可化為
f(1+a)=1+a﹣aln(1+a)+1<0,無(wú)解;
④當(dāng)e﹣1<a時(shí),
存在x0∈[1,e](e=2.718…),使得f(x0)<0成立可化為
f(e)=e﹣a+<0,
解得,a>;
綜上所述,a的取值范圍為(﹣∞,﹣2)∪(,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子里裝有大小均勻的8個(gè)小球,其中有紅色球4個(gè),編號(hào)分別為1,2,3,4;白色球4個(gè),編號(hào)分別為2,3,4,5. 從盒子中任取4個(gè)小球(假設(shè)取到任何一個(gè)小球的可能性相同).
(1)求取出的4個(gè)小球中,含有編號(hào)為4的小球的概率;
(2)在取出的4個(gè)小球中,小球編號(hào)的最大值設(shè)為,求隨機(jī)變量的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f (x)=x2,g(x)=x-1.
(1)若存在x∈R使f(x)<b·g(x),求實(shí)數(shù)b的取值范圍;
(2)設(shè)F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在上單調(diào)遞增,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD的底面為直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E為AB的中點(diǎn).
(I)求證:平面PDE⊥平面PAC;
(Ⅱ)求直線PC與平面PDE所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)P在橢圓 +y2=1上,F(xiàn)1、F2分別是橢圓的兩焦點(diǎn),且∠F1PF2=60°,則△F1PF2的面積是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中為偶函數(shù)又在(0,+∞)上是增函數(shù)的是( )
A.y=( )|x|
B.y=x2
C.y=|lnx|
D.y=2﹣x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC= AA1 , D是棱AA1的中點(diǎn),DC1⊥BD.
(1)證明:DC1⊥面BCD;
(2)設(shè)AA1=2,求點(diǎn)B1到平面BDC1的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若是的極值點(diǎn),求的極大值;
(2)求實(shí)數(shù)的范圍,使得恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( ).
A. ,“”是“”的必要不充分條件
B. “且為真命題”是“或為真命題” 的必要不充分條件
C. 命題“,使得”的否定是:“”
D. 命題:“”,則是真命題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com