【題目】如圖,在三棱錐P﹣ABC中,△ABC是等邊三角形,D是AC的中點,PA=PC,二面角P﹣AC﹣B的大小為60°;

(1)求證:平面PBD⊥平面PAC;
(2)求AB與平面PAC所成角的正弦值.

【答案】
(1)證明:∵BD⊥AC,PD⊥AC,BD∩PD=D,

∴AC⊥面PBD,

又AC面PAC,所以 面PAC⊥面PBD,

即平面平面PBD⊥平面PAC


(2)解:如圖建立空間直角坐標系,則D(0,0,0),

令A(1,0,0),則B(0, ,0),C(﹣1,0,0),

又∠PDB為二面角P﹣AC﹣B的平面角,得∠PDB=60°,

設DP=λ,則P(0, , λ),

=(x,y,z)為面PAC的法向量,則 =(﹣2,0,0), =(﹣1, , λ),

取y= ,得 =(0, ,﹣1),

=(﹣1, ,0)得 cos< , >= ,

∴AB與平面PAC所成角的正弦值為


【解析】(1)證明AC⊥面PBD,即可證明平面PBD⊥平面PAC;(2)求出面PAC的法向量,利用向量的方法求AB與平面PAC所成角的正弦值.
【考點精析】根據(jù)題目的已知條件,利用平面與平面垂直的判定和空間角的異面直線所成的角的相關知識可以得到問題的答案,需要掌握一個平面過另一個平面的垂線,則這兩個平面垂直;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)的定義域是(0,+∞),對于任意正實數(shù)m,n恒有f(mn)=f(m)+f(n),且當x>1時,f(x)>0,f(2)=1.
(1)求 的值;
(2)求證:f(x)在(0,+∞)上是增函數(shù);
(3)求方程4sinx=f(x)的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若直線 l1和l2 是異面直線,l1在平面 α內(nèi),l2在平面β內(nèi),l是平面α與平面β的交線,則下列命題正確的是(
A.l與l1 , l2都不相交
B.l與l1 , l2都相交
C.l至多與l1 , l2中的一條相交
D.l至少與l1 , l2中的一條相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐S﹣ABCD的底面為正方形,SD⊥底面ABCD,則下列結論中不正確的是(

A.AC⊥SB
B.AB∥平面SCD
C.SA與平面SBD所成的角等于SC與平面SBD所成的角
D.AB與SC所成的角等于DC與SA所成的角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓,如圖所示,斜率為且不過原點的直線交橢圓于兩點,線段的中點為,射線交橢圓于點,交直線于點.

(1)求的最小值;

(2)若,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)在區(qū)間(0,π)上為減函數(shù)的是(
A.y=(x﹣3)2
B.y=sinx
C.y=cosx
D.y=tanx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象與軸相切,且切點在軸的正半軸上.

1)求曲線,直線軸圍成圖形的面積

2若函數(shù)上的極小值不大于,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖 已知A(1,2)、B(﹣1,4)、C(5,2),
(1)求線段AB中點D坐標;
(2)求△ABC的邊AB上的中線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利用隨機數(shù)表法對一個容量為500編號為000,001,002,…,499的產(chǎn)品進行抽樣檢驗,抽取一個容量為10的樣本,若選定從第12行第5列的數(shù)開始向右讀數(shù),(下面摘取了隨機數(shù)表中的第11行至第15行),根據(jù)下圖,讀出的第3個數(shù)是(
A.841
B.114
C.014
D.146

查看答案和解析>>

同步練習冊答案