雙曲線以原點(diǎn)為中心,坐標(biāo)軸為對(duì)稱軸,且與圓交于點(diǎn)

A(4,-1),如果圓在點(diǎn)A的切線與雙曲線的一條漸近線平行,則雙曲線方程是

[    ]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y2=4ax(a>0),橢圓C以原點(diǎn)為中心,以拋物線C1的焦點(diǎn)為右焦點(diǎn),且長軸與短軸之比為
2
,過拋物線C1的焦點(diǎn)F作傾斜角為
π
4
的直線l,交橢圓C于一點(diǎn)P(點(diǎn)P在x軸上方),交拋物線C1于一點(diǎn)Q(點(diǎn)Q在x軸下方).
(1)求點(diǎn)P和Q的坐標(biāo);
(2)將點(diǎn)Q沿直線l向上移動(dòng)到點(diǎn)Q′,使|QQ′|=4a,求過P和Q′且中心在原點(diǎn),對(duì)稱軸是坐標(biāo)軸的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x-y-1=0與實(shí)軸在y軸上的雙曲線x2-y2=m(m≠0)的交點(diǎn)在以原點(diǎn)為中心,邊長為2,且各邊分別平行于坐標(biāo)軸的正方形的內(nèi)部,則m的取值范圍為( 。
A、0<m<1B、m<0C、m<-1D、-1<m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•東城區(qū)二模)已知拋物線C1:y2=4ax(a>0),橢圓C以原點(diǎn)為中心,以拋物線C1的焦點(diǎn)為右焦點(diǎn),且長軸與短軸之比為
2
,過拋物線C1的焦點(diǎn)F作傾斜角為
π
4
的直線l,交橢圓C于一點(diǎn)P(點(diǎn)P在x軸上方),交拋物線C1于一點(diǎn)Q(點(diǎn)Q在x軸下方).
(Ⅰ)求點(diǎn)P和Q的坐標(biāo);
(Ⅱ)將點(diǎn)Q沿直線l向上移動(dòng)到點(diǎn)Q′,使|QQ′|=4a,求過P和Q′且中心在原點(diǎn),對(duì)稱軸是坐標(biāo)軸的雙曲線的方程;
(Ⅲ)設(shè)點(diǎn)A(t,0)(常數(shù)t>4),當(dāng)a在閉區(qū)間〔1,2〕內(nèi)變化時(shí),求△APQ面積的最大值,并求相應(yīng)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黃岡重點(diǎn)作業(yè)·高三數(shù)學(xué)(下) 題型:044

已知雙曲線以原點(diǎn)為中心,以x軸為一條對(duì)稱軸,它的一條漸近線與一條準(zhǔn)線交于點(diǎn)(),求這一雙曲線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案