已知各項均為正數(shù)的等比數(shù)列{an},a1,a2+2,a3構(gòu)成等差數(shù)列,且a1=1,則等比數(shù)列{an}的公比為( 。
A、3或-1B、1C、-1D、3
考點:等比數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:利用各項均為正數(shù)的等比數(shù)列{an},a1,a2+2,a3構(gòu)成等差數(shù)列,且a1=1,建立方程,即可求出等比數(shù)列{an}的公比.
解答: 解:設(shè)等比數(shù)列{an}的公比為q,則
∵各項均為正數(shù)的等比數(shù)列{an},a1,a2+2,a3構(gòu)成等差數(shù)列,且a1=1,
∴2(q+2)=1+q2,
∵q>0,
∴q=3,
故選:D.
點評:本題考查等差數(shù)列的性質(zhì),考查學生的計算能力,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)定義在R上的函數(shù)f(x),滿足f(x+2)-f(x)=0,若0<x<1時f(x)=2x,則f(log2
1
48
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三個不同的平面α,β,γ和兩條不重合的直線m,n,有下列4個命題:
①若m∥α,α∩β=n,則m∥n;
②若m⊥α,m∥n,n?β,則α⊥β;
③若α⊥β,γ⊥β,則α∥γ;
④若α∩β=m,m⊥γ,則α⊥γ.
其中正確命題的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“a=
1
2
”是“直線ax-y-4=0與直線x-2y-m=0平行”的( 。
A、充要條件
B、充分而不必要條件
C、必要而不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合U為實數(shù)集R,A={x|
x+1
x-m
>0},∁UA={y|y=x 
1
3
,x∈[-1,8]},則m值是( 。
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P(0,1),O(0,0),A(1,0)為平面直角坐標系內(nèi)的三點,若過點P的直線l與線段OA有公共點,則直線l的傾斜角的取值范圍是( 。
A、[0,
π
4
]
B、[
π
4
,
π
2
]
C、[
π
2
4
]
D、[
4
,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“?x∈R,x2+ax+1≥0”為真命題,則實數(shù)a的取值范圍是( 。
A、[-2,2]
B、(-2,2)
C、(-∞,-2]∪[2,+∞)
D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=log 
1
2
(2x-3)的定義域為( 。
A、(2,+∞)
B、[2,+∞)
C、(
3
2
,+∞)
D、[
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在可行域
y≥
3
x
x≥0
x+y≤2
內(nèi)任取一點P(x,y),則點P滿足x2+y2≤1的概率是( 。
A、
(1+
3
24
B、
(
3
-1)π
24
C、
(3+
3
36
D、
(3-
3
36

查看答案和解析>>

同步練習冊答案