(本小題滿分10分)設(shè)圓滿足:

(Ⅰ)截y軸所得弦長為2;

(Ⅱ)被x軸分成兩段圓弧,其弧長的比為3∶1.

在滿足條件(Ⅰ)、(Ⅱ)的所有圓中,求圓心到直線l:x-2y=0的距離最小的圓的方程.

 

 

【答案】

解法一  設(shè)圓的圓心為P(a,b),半徑為r,則點(diǎn)P到x軸,y軸的距離分別為|b|,|a|。由題設(shè)知圓P截x軸所得劣弧所對的圓心角為90°,∴圓P截x軸所得的弦長為r,故r2=2b2。 又圓P截y軸所得的的弦長為2,所以有r2=a2+1。從而得2b2-a2=1。又點(diǎn)P(a,b)到直線x-2y=0的距離為d=,所以5d2=|a-2b|2=a2+4b2-4ab≥a2+4b2 -2(a2+b2)=2b2-a2=1,當(dāng)且僅當(dāng)a=b時(shí),上式等號成立,從而要使d取得最小值,則應(yīng)有,解此方程組得。又由r2=2b2知r=。于是,所求圓的方程是(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2。------10分

解法二  同解法一得d=,∴a-2b=±d,得a2=4b2±bd+5d2      ①

將a2=2b2-1代入①式,整理得2b2±4bd+5d2+1=0  ②  把它看作b的二次方程,由于方程有實(shí)根,故判別式非負(fù),即△=8(5d2-1)≥0,得5d2≥1。所以5d2有最小值1,從而d有最小值。將其代入②式得2b2±4b+2=0,解得b=±1。將b=±1代入r2=2b2得r2=2,由r2=a2+1得a=±1。綜上a=±1,b=±1,r2=2。由|a-2b|=1知a,b同號。于是,所求圓的方程是(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2。--------10分

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評分,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(diǎn)(不與點(diǎn)A,C重合),延長BD至點(diǎn)E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設(shè)a,b,c均為正實(shí)數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題包括(1)、(2)、(3)、(4)四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
若多做,則按作答的前兩題評分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
(1)、選修4-1:幾何證明選講
如圖,∠PAQ是直角,圓O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B,C.求證:BT平分∠OBA
(2)選修4-2:矩陣與變換(本小題滿分10分)
若點(diǎn)A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣
(3)選修4-2:矩陣與變換(本小題滿分10分)
在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上的動(dòng)點(diǎn),B為直線ρcosθ+ρsinθ-7=0上的動(dòng)點(diǎn),求AB的最小值.
(4)選修4-5:不等式選講(本小題滿分10分)
已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

必做題:(本小題滿分10分,請?jiān)诖痤}指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟)
已知an(n∈N*)是二項(xiàng)式(2+x)n的展開式中x的一次項(xiàng)的系數(shù).
(Ⅰ)求an
(Ⅱ)是否存在等差數(shù)列{bn},使an=b1cn1+b2cn2+b3cn3+…+bncnn對一切正整數(shù)n都成立?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分10分)數(shù)學(xué)的美是令人驚異的!如三位數(shù)153,它滿足153=13+53+33,即這個(gè)整數(shù)等于它各位上的數(shù)字的立方的和,我們稱這樣的數(shù)為“水仙花數(shù)”.請您設(shè)計(jì)一個(gè)算法,找出大于100,小于1000的所有“水仙花數(shù)”.
(1)用自然語言寫出算法;
(2)畫出流程圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-2:矩陣與變換)(本小題滿分10分)
求矩陣A=
32
21
的逆矩陣.

查看答案和解析>>

同步練習(xí)冊答案