【題目】下列四組函數(shù)中,表示同一函數(shù)的是(
A.f(x)=x0與g(x)=1
B.f(x)=x與g(x)=
C.f(x)=x2﹣1與g(x)=x2+1
D.f(x)=|x|與g(x)=

【答案】D
【解析】解:對于A:f(x)=x0的定義域為{x|x≠0},而g(x)=1定義域為R,它們的定義域不同,∴不是同一函數(shù); 對于B:f(x)=x的定義域為R,而g(x)= 定義域為{x|x≠0},它們的定義域不同,∴不是同一函數(shù);
對于C:f(x)=x2﹣1和g(x)=x2+1的定義域都是R,它們的定義域相同,但對應(yīng)關(guān)系不同,∴不是同一函數(shù);
對于D:f(x)=|x|和g(x)= 的定義域都是R,它們的定義域相同,對應(yīng)關(guān)系也相同,∴是同一函數(shù);
故選D.
【考點精析】利用判斷兩個函數(shù)是否為同一函數(shù)對題目進(jìn)行判斷即可得到答案,需要熟知只有定義域和對應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)求證:

(Ⅲ)判斷曲線是否位于軸下方,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求的值;

(2)設(shè)為整數(shù),且對于任意正整數(shù), ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,g(x)= ,若方程f(x)=g(x)﹣a有且只有一個實數(shù)根,則實數(shù)a的取值集合為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知復(fù)平面內(nèi)平行四邊形ABCD中,點A對應(yīng)的復(fù)數(shù)為﹣1, 對應(yīng)的復(fù)數(shù)為2+2i, 對應(yīng)的復(fù)數(shù)為4﹣4i.
(Ⅰ)求D點對應(yīng)的復(fù)數(shù);
(Ⅱ)求平行四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+1在x=﹣1與x=2處有極值.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)在[﹣2,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=1﹣nan(n∈N*
(1)計算a1 , a2 , a3 , a4;
(2)猜想an的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為[﹣1,5],部分對應(yīng)值如表,

x

﹣1

0

4

f(x)

1

2

2

f(x)的導(dǎo)函數(shù)y=f′(x)的圖象(該圖象關(guān)于(2,0)中心對稱) 如圖所示.
下列關(guān)于f(x)的命題:
①函數(shù)f(x)的極大值點為 0與4;
②函數(shù)f(x)在[0,2]上是減函數(shù);
③函數(shù)y=f(x)﹣a零點的個數(shù)可能為0、1、2、3、4個;
④如果當(dāng)時x∈[﹣1,t],f(x)的最大值是2,那么t的最大值為5;.
⑤函數(shù)f(x)的圖象在a=1是上凸的
其中一定正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=|x﹣3|+|x﹣4|. (Ⅰ)解不等式f(x)≤2;
(Ⅱ)若對任意實數(shù)x∈[5,9],f(x)≤ax﹣1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案