1.已知函數(shù)$f(x)=\left\{\begin{array}{l}(a-1)x+4a,x≤1\\-{x^2}-(a+1)x,x>1\end{array}\right.$為R上的減函數(shù),則實(shí)數(shù)a的取值范圍為[-$\frac{1}{6}$,1).

分析 由題意可得$\left\{\begin{array}{l}{a-1<0}\\{-\frac{a+1}{2}≤1}\\{a-1+4a≥-a-2}\end{array}\right.$,由此求得實(shí)數(shù)a的取值范圍.

解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}(a-1)x+4a,x≤1\\-{x^2}-(a+1)x,x>1\end{array}\right.$為R上的減函數(shù),
則$\left\{\begin{array}{l}{a-1<0}\\{-\frac{a+1}{2}≤1}\\{a-1+4a≥-a-2}\end{array}\right.$,
∴-$\frac{1}{6}$≤a<1,
故答案為:$[{-\frac{1}{6},1})$.

點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=(x-a)lnx,(a≥0).
(1)當(dāng)a=0時(shí),若直線y=2x+m與函數(shù)y=f(x)的圖象相切,求m的值;
(2)若f(x)在[1,2]上是單調(diào)減函數(shù),求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.“a=3”是“直線ax+2y+3a=0和直線3x+(a-1)y+7=0平行”的充分不必要條件.(選“充分不必要”“必要不充分”“充要”“既不充分也不必要”填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知直線(a-1)x-2y+4=0與x-ay-2=0平行,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)i為虛數(shù)單位,已知復(fù)數(shù)$z=\frac{1-i}{i}$,則z的共軛復(fù)數(shù)在復(fù)平面內(nèi)表示的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若(1+2x)6的展開式中的第2項(xiàng)大于它的相鄰兩項(xiàng),則x的取值范圍是(  )
A.$\frac{1}{12}$<x<$\frac{1}{5}$B.$\frac{1}{6}$<x<$\frac{1}{5}$C.$\frac{1}{12}$<x<$\frac{2}{3}$D.$\frac{1}{6}$<x<$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知O是銳角△ABC的外接圓圓心,$tanA=\frac{{\sqrt{2}}}{2}$,若$\frac{cosB}{sinC}\overrightarrow{AB}+\frac{cosC}{sinB}\overrightarrow{AC}=2m\overrightarrow{AO}$,則m的值為(  )
A.1B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{6}$D.$\frac{{\sqrt{3}}}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若α,β滿足-π≤α≤β≤$\frac{π}{2}$,則α-β的取值范圍為[-$\frac{3π}{2}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某校在一次期末數(shù)學(xué)測(cè)試中,為統(tǒng)計(jì)學(xué)生的考試情況,從學(xué)校的2000
名學(xué)生中隨機(jī)抽取50名學(xué)生的考試成績(jī),被測(cè)學(xué)生成績(jī)?nèi)拷橛?0分到140分之間(滿分150分),將統(tǒng)計(jì)結(jié)果按如下方式分成八組:第一組,如圖是按上述分組方法得到的頻率分布直方圖的一部分.
(1)求第七組的頻率,并完成頻率分布直方圖;
(2)估計(jì)該校的2000名學(xué)生這次考試成績(jī)的平均分(可用中值代替各組數(shù)據(jù)平均值);
(3)若從樣本成績(jī)屬于第一組和第六組的所有學(xué)生中隨機(jī)抽取2名,求他們的分差小于10分的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案