已知數(shù)列{an}的前n項和sn=n2+n,(n∈N+),數(shù)列{bn}滿足bn+1=2bn-1,(n∈N+)且b1=5
(1)求數(shù)列{an}{bn}的通項公式.
(2)設(shè)數(shù)列{cn}的前n項和Tn,且cn=
1
anlog2(bn-1)
,證明:Tn
1
2
分析:(1)結(jié)合已知條件可得a1=S1=2,利用公式an=Sn-Sn-1=n2+n-[(n-1)2+(n-1)]=2n,再由bn+1=2bn-1,得bn+1-1=2(bn-1),由等比數(shù)列的定義可得{bn-1}是以4為首項,2為公比的等比數(shù)列,從而可求bn-1進(jìn)一步可得bn=2n+1+1;
(2)確定數(shù)列通項,利用裂項求和可求先求Tn,進(jìn)一步可證結(jié)論.
解答:(1)解:當(dāng)n=1時,a1=S1=2,
當(dāng)n≥2時,an=Sn-Sn-1=n2+n-[(n-1)2+(n-1)]=2n,
當(dāng)n=1時,2n=2=a1,所以an=2n;
由bn+1=2bn-1,得bn+1-1=2(bn-1),又b1-1=4≠0,
所以{bn-1}是以4為首項,2為公比的等比數(shù)列.
所以bn-1=(b1-1)2n-1=2n+1,所以bn=2n+1+1;
(2)證明:cn=
1
anlog2(bn-1)
=
1
2n(n+1)
=
1
2
1
n
-
1
n+1

∴Tn=
1
2
[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=
1
2
(1-
1
n+1

Tn
1
2
點評:本題主要考查已知前n項和為Sn求數(shù)列{an}的通項公式以及已知遞推關(guān)系求通項,考查裂項法求和,考查不等式的證明,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊答案