分析:(1)結(jié)合已知條件可得a1=S1=2,利用公式an=Sn-Sn-1=n2+n-[(n-1)2+(n-1)]=2n,再由bn+1=2bn-1,得bn+1-1=2(bn-1),由等比數(shù)列的定義可得{bn-1}是以4為首項,2為公比的等比數(shù)列,從而可求bn-1進(jìn)一步可得bn=2n+1+1;
(2)確定數(shù)列通項,利用裂項求和可求先求Tn,進(jìn)一步可證結(jié)論.
解答:(1)解:當(dāng)n=1時,a
1=S
1=2,
當(dāng)n≥2時,a
n=S
n-S
n-1=n
2+n-[(n-1)
2+(n-1)]=2n,
當(dāng)n=1時,2n=2=a
1,所以a
n=2n;
由b
n+1=2b
n-1,得b
n+1-1=2(b
n-1),又b
1-1=4≠0,
所以{b
n-1}是以4為首項,2為公比的等比數(shù)列.
所以b
n-1=(b
1-1)2
n-1=2
n+1,所以b
n=2
n+1+1;
(2)證明:
cn==
=
(
-
)
∴T
n=
[(1-
)+(
-
)+…+(
-
)]=
(1-
)
∴
Tn<.
點評:本題主要考查已知前n項和為Sn求數(shù)列{an}的通項公式以及已知遞推關(guān)系求通項,考查裂項法求和,考查不等式的證明,屬于中檔題.