已知AB為圓O的一條弦,且|AB|=2,則數(shù)量積
AB
AO
的值為( 。
A、2B、3
C、4D、與圓的半徑有關(guān)
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:設(shè)AB的中點(diǎn)為M,連接OM,運(yùn)用圓的垂徑定理,可得OM⊥AB,運(yùn)用向量的數(shù)量積的定義和解直角三角形的知識(shí),即可得到.
解答: 解:設(shè)AB的中點(diǎn)為M,連接OM,則OM⊥AB,
AB
AO
=2
AM
AO

=2|
AM
|•|
AO
|•cosA=2×1•|
AO
|•cosA
=2|
AM
|=2.
故選A.
點(diǎn)評(píng):本題考查向量的數(shù)量積的定義,考查圓的垂徑定理,考查解直角三角形,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)的值域?yàn)閇1,+∞)的是( 。
A、y=(
1
2
x-1
B、y=(
1
2
x+1
C、y=log2(x2-2x+2)
D、y=log2(x2-2x+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A為△ABC內(nèi)角,滿足sinA+cosA=a,當(dāng)-1<a<0時(shí),則△ABC是
 
三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)棱錐的三視圖如圖,則該棱錐的體積是( 。
A、
8
3
B、
4
3
C、4
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲乙兩班進(jìn)行一門課程的考試,按照學(xué)生考試成績(jī)的優(yōu)秀和不優(yōu)秀統(tǒng)計(jì)后得到如列聯(lián)表:
(1)據(jù)此數(shù)據(jù)有多大的把握認(rèn)為學(xué)生成績(jī)優(yōu)秀與班級(jí)有關(guān)?
(2)用分層抽樣的方法在成績(jī)優(yōu)秀的學(xué)生中隨機(jī)抽取5名學(xué)生,問(wèn)甲、乙兩班各應(yīng)抽取多少人?
(3)在(2)中抽取的5名學(xué)生中隨機(jī)選取2名學(xué)生介紹學(xué)習(xí)經(jīng)驗(yàn),求至少有一人來(lái)自乙班的概率.(k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
優(yōu)秀不優(yōu)秀總計(jì)
甲班153550
乙班104050
總計(jì)2575100
P(k2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足
x≤y
y≤6-2x
x≥1
,向量
a
=(2x-y,m),
b
=(-1,1),若
a
b
,則實(shí)數(shù)m的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l⊥平面α,直線m?平面β,則下列四個(gè)命題中,真命題是( 。
A、l∥m⇒α⊥β
B、α⊥β⇒l∥m
C、l⊥m⇒α∥β
D、l⊥m⇒α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,已知a1=3,a2=2,當(dāng)n≥2時(shí),an+1是an•an-1的個(gè)位數(shù),則a2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,由曲線y=sinx,直線x=
3
2
π與x軸圍成的陰影部分的面積是( 。
A、1
B、2
C、2
2
D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案