【題目】為緩解交通運(yùn)行壓力,某市公交系統(tǒng)實(shí)施疏堵工程.現(xiàn)調(diào)取某路公交車早高峰時段全程運(yùn)輸時間(單位:分鐘)的數(shù)據(jù),從疏堵工程完成前的數(shù)據(jù)中隨機(jī)抽取5個數(shù)據(jù),記為組;從疏堵工程完成后的數(shù)據(jù)中隨機(jī)抽取5個數(shù)據(jù),記為組.
組:
組:
(Ⅰ)該路公交車全程運(yùn)輸時間不超過分鐘,稱為“正點(diǎn)運(yùn)行”.從,兩組數(shù)據(jù)中各隨機(jī)抽取一個數(shù)據(jù),求這兩個數(shù)據(jù)對應(yīng)的兩次運(yùn)行中至少有一次“正點(diǎn)運(yùn)行”的概率;
(Ⅱ)試比較,兩組數(shù)據(jù)方差的大。ú灰笥(jì)算),并說明其實(shí)際意義.
【答案】(Ⅰ);(Ⅱ)組數(shù)據(jù)的方差小于組數(shù)據(jù)的方差.說明疏堵工程完成后,該路公交車全程運(yùn)輸時間更加穩(wěn)定,而且“正點(diǎn)運(yùn)行”率高,運(yùn)行更加有保障..
【解析】
(Ⅰ)先求出從,兩組數(shù)據(jù)中各隨機(jī)抽取一個數(shù)據(jù),不同的取法的種數(shù),在求出兩個數(shù)據(jù)對應(yīng)的兩次運(yùn)行中至少有一次“正點(diǎn)運(yùn)行”的種數(shù),最后利用古典概型計(jì)算公式,求出概率;
(Ⅱ)可以通過數(shù)據(jù)的波動情況判斷出方差的大小,最后得出結(jié)論.
(Ⅰ)解:從,兩組數(shù)據(jù)中各隨機(jī)抽取一個數(shù)據(jù),所有不同的取法共有種.
從組中取到時,組中符合題意的取法為,
共種;
從組中取到時,組中符合題意的取法為,
共種;
因此符合題意的取法共有種,
所以該路公交車至少有一次“正點(diǎn)運(yùn)行”的概率.
(Ⅱ)解:組數(shù)據(jù)的方差小于組數(shù)據(jù)的方差.說明疏堵工程完成后,該路公交車全程運(yùn)輸時間更加穩(wěn)定,而且“正點(diǎn)運(yùn)行”率高,運(yùn)行更加有保障.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知為三個不同的定點(diǎn).以原點(diǎn)為圓心的圓與線段都相切.
(Ⅰ)求圓的方程及的值;
(Ⅱ)若直線與圓相交于兩點(diǎn),且,求的值;
(Ⅲ)在直線上是否存在異于的定點(diǎn),使得對圓上任意一點(diǎn),都有為常數(shù)?若存在,求出點(diǎn)的坐標(biāo)及的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某村莊對村內(nèi)50名老年人、年輕人每年是否體檢的情況進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表所示:
每年體檢 | 未每年體檢 | 合計(jì) | |
老年人 | 7 | ||
年輕人 | 6 | ||
合計(jì) | 50 |
已知抽取的老年人、年輕人各25名
(Ⅰ)請完成上面的列聯(lián)表;
(Ⅱ)試運(yùn)用獨(dú)立性檢驗(yàn)思想方法,判斷能否有99%的把握認(rèn)為每年是否體檢與年齡有關(guān)?
附:,
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某射擊游戲規(guī)定:每位選手最多射擊3次;射擊過程中若擊中目標(biāo),方可進(jìn)行下一次射擊,否則停止射擊;同時規(guī)定第i(i=1,2,3)次射擊時擊中目標(biāo)得4﹣i分,否則該次射擊得0分.已知選手甲每次射擊擊中目標(biāo)的概率為0.8,且其各次射擊結(jié)果互不影響.
(Ⅰ)求甲恰好射擊兩次的概率;
(Ⅱ)設(shè)該選手甲停止射擊時的得分總和為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在處取得極值,求的值;
(Ⅱ)設(shè),若函數(shù)在定義域上為單調(diào)增函數(shù),求的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從含有兩件正品,和一件次品的3件產(chǎn)品中每次任取一件,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件是次品的概率.
(1)每次取出不放回;
(2)每次取出后放回.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,ABCD是一塊邊長為7米的正方形鐵皮,其中ATN是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個有邊落在BC與CD上的長方形鐵皮,其中P是弧TN上一點(diǎn).設(shè),長方形的面積為S平方米.
(1)求關(guān)于的函數(shù)解析式;
(2)求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com