正四棱錐PABCD中,底面邊長(zhǎng)為6,F、E分別在PA、PD上,且PA=3PF,PD=3PE,截面BCEF⊥側(cè)面PAD,

(1)求側(cè)棱與底面所成的角(結(jié)果用反三角表示);

(2)求四棱錐ABCEF的體積.

解:(1)取ADBC、AC中點(diǎn)MN、O,連結(jié)PN、GNPO.?

O為坐標(biāo)原點(diǎn),直線ON、OP分別為y軸、z軸,建立空間坐標(biāo)系Oxyz.如圖,設(shè)P(0,0,t)(t>0),則A(3,-3,0),D(-3,-3,0),B(3,3,0),C(-3,3,0),F(1,-1,t),?

=(3,-3,-t),=(-6,0,0),=(2,4,-t),=(-6,0,0).?

設(shè)平面PAD的法向量m=(a,b,1),平面BCEF的法向量n=(c,d,1),?

m=0,m=0,得a=0,b=-.?

m=(0,-,1).?

n=0,n=0,得c=0,d=.?

n=(0, ,1).?

又平面PAD⊥平面BCEF,?

mn=0,則t=3.∴P(0,0,3).?

=(0,0,3),=(3,-3,-3).?

∴cos〈,〉==-.?

∴側(cè)棱PA與底面ABCD成45°.?

(2)n=(0, ,1),cos〈,n〉==,?

∴h=||cos〈,n〉=2.又SBCEF=8,?

VABCEF?=SBCEF?h=16.

點(diǎn)評(píng):在正棱錐中常常應(yīng)用“高、側(cè)棱、斜高、底面線段”圍成的直角三角形和等腰三角形來(lái)分析線面關(guān)系.本題考查平面與平面垂直的性質(zhì)定理和體積公式等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四棱錐P-ABCD的高為4,側(cè)棱與底面所成的角為60°,則該正四棱錐的側(cè)面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正四棱錐P-ABCD底面的四個(gè)頂點(diǎn)A、B、C、D在球O的同一個(gè)大圓上,點(diǎn)P在球面上,如果VP-ABCD=
16
3
,則求O的表面積為( 。
A、4πB、8π
C、12πD、16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用斜二測(cè)畫(huà)法畫(huà)一個(gè)底面邊長(zhǎng)為4cm,高為3cm 的正四棱錐P-ABCD的直觀圖,點(diǎn)P在底面的投影是正方形的中心O,計(jì)算它的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•溫州一模)如圖是正四棱錐P-ABCD的三視圖,其中正視圖是邊長(zhǎng)為1的正三角形,則這個(gè)四棱錐的表面積是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四棱錐P-ABCD的側(cè)棱和底面邊長(zhǎng)都等于2
2
,則它的外接球的表面積是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案