【題目】某種商品價(jià)格與該商品日需求量之間的幾組對(duì)照數(shù)據(jù)如下表:
(1)求y關(guān)于x的線性回歸方程;
(2)利用(1)中的回歸方程,當(dāng)價(jià)格x=40元/kg時(shí),日需求量y的預(yù)測(cè)值為多少?
參考公式:線性回歸方程,其中=,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線與拋物線交于,兩點(diǎn),與橢圓交于,兩點(diǎn),直線,,,(為坐標(biāo)原點(diǎn))的斜率分別為,,,,若.
(1)是否存在實(shí)數(shù),滿足,并說明理由;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】單位圓的內(nèi)接正n(n≥3)邊形的面積記為,則f(3)=_____; 下面是關(guān)于的描述:
③ ④
其中正確結(jié)論的序號(hào)為__________.(注:請(qǐng)寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為, ,離心率為,且過點(diǎn).
()求橢圓的標(biāo)準(zhǔn)方程.
()、、、是橢圓上的四個(gè)不同的點(diǎn),兩條都不和軸垂直的直線和分別過點(diǎn), ,且這條直線互相垂直,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)判斷直線與曲線的位置關(guān)系,并說明理由;
(2)若直線和曲線相交于兩點(diǎn),且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,則當(dāng)時(shí),討論的單調(diào)性;
(2)若,且當(dāng)時(shí),不等式在區(qū)間上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為:(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)曲線與直線交于兩點(diǎn),若點(diǎn)的坐標(biāo)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于,兩點(diǎn),且設(shè)定點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,分別為左,右焦點(diǎn),分別為左,右頂點(diǎn),原點(diǎn)到直線的距離為.設(shè)點(diǎn)在第一象限,且軸,連接交橢圓于點(diǎn).
(1)求橢圓的方程;
(2)若三角形的面積等于四邊形的面積,求直線的方程;
(3)求過點(diǎn)的圓方程(結(jié)果用表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com