如果的三個內角的余弦值分別等于對應的三個內角的正弦值,則
A.均為銳角三角形
B.均為鈍角三角形
C.為鈍角三角形,為銳角三角形
D.為銳角三角形,為鈍角三角形
D

試題分析:首先根據(jù)正弦、余弦在(0,π)內的符號特征,確定△A1B1C1是銳角三角形;然后假設△A2B2C2是銳角三角形,則由cosα=sin( -α)推導出矛盾;再假設△A2B2C2是直角三角形,易于推出矛盾;最后得出△A2B2C2是鈍角三角形的結論.解:因為△A2B2C2的三個內角的正弦值均大于0,所以△A1B1C1的三個內角的余弦值也均大于0,則△A1B1C1是銳角三角形.若△A2B2C2是銳角三角形,由sinA2=cosA1=sin( - A1), sinB2=cosB1=sin( - B1), sinC2=cosC1=sin( - C1)得,那么,A2+B2+C2=,這與三角形內角和是π相矛盾;若△A2B2C2是直角三角形,不妨設A2=,則sinA2=1=cosA1,所以A1在(0,π)范圍內無值.所以△A2B2C2是鈍角三角形.故選D
點評:本題主要考查正余弦函數(shù)在各象限的符號特征及誘導公式,同時考查反證法思想
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)滿足對任意的都有,
則2014                

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將函數(shù)的圖像上所有的點向右平行移動個單位長度,再把所得各點的橫坐標伸長到原來的倍(縱坐標不變),所得圖像的函數(shù)解析式是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求值
(1)已知
的值;
(2)已知,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知角的終邊過點,則的值為(    )
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若-<α<0,則點P(tanα,cosα)位于          (  )
A.第一象限B.第二象限
C.第三象限 D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

比較大。(1)       (2)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),給出下列四個說法:
①若,則;②的最小正周期是;③在區(qū)間上是增函數(shù); ④的圖象關于直線對稱. 其中正確說法的個數(shù)為( ) 
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為第二象限角,sin=,則cos=
A.-B.-C.D.

查看答案和解析>>

同步練習冊答案