(2013•昌平區(qū)一模)已知每項(xiàng)均是正整數(shù)的數(shù)列a1,a2,a3,…a100,其中等于i的項(xiàng)有ki個(gè)(i=1,2,3…),設(shè)bj=k1+k2+…+kj(j=1,2,3…),g(m)=b1+b2+…+bm-100m(m=1,2,3…).
(Ⅰ)設(shè)數(shù)列k1=40,k2=30,k3=20,k4=10,k5=…=k100=0,
①求g(1),g(2),g(3),g(4);
②求a1+a2+a3+…+a100的值;
(Ⅱ)若a1,a2,a3,…a100中最大的項(xiàng)為50,比較g(m),g(m+1)的大小.
分析:(I)①因?yàn)閿?shù)列k1,k2,k3,k4的值已知,所以b1,b2,b3,b4由公式bj=k1+k2+…kj(j=1,2,3…)求得,所以g(1),g(2),g(3),g(4)由公式g(m)=b1+b2+…bm-100m(m=1,2,3…)求得;
②a1+a2+a3+…+a100=40×1+30×2+20×3+10×4=200;
(II)由題意,g(m)=b1+b2+…bm-100m,g(m+1)=b1+b2+…bm+bm+1-100(m+1),作差比較,得g(m+1)-g(m)=bm+1-100,由bj的含義,知bm+1≤100,故得g(m+1),g(m)的大小,又a1,a2,a3,…,a100中最大的項(xiàng)為50,知當(dāng)m≥50時(shí)bm=100,所以,當(dāng)1<m<49時(shí),有g(shù)(m)>g(m+1);當(dāng)m≥49時(shí),有g(shù)(m)=g(m+1);
解答:解:(I)①因?yàn)閿?shù)列k1=40,k2=30,k3=20,k4=10,所以b1=40,b2=70,b3=90,b4=100,
所以:g(1)=-60,g(2)=-90,g(3)=-100,g(4)=-100;
②a1+a2+a3+…+a100=40×1+30×2+20×3+10×4=200;
(II)一方面,g(m+1)-g(m)=bm+1-100,根據(jù)bj的含義,知bm+1≤100,
故g(m+1)-g(m)≤0,即g(m)≥g(m+1),
當(dāng)且僅當(dāng)bm+1=100時(shí)取等號.
因?yàn)閍1,a2,a3,…,a100中最大的項(xiàng)為50,所以當(dāng)m≥50時(shí)必有bm=100,
所以g(1)>g(2)>…>g(49)=g(50)=g(51)=…
即當(dāng)1<m<49時(shí),有g(shù)(m)>g(m+1);
當(dāng)m≥49時(shí),有g(shù)(m)=g(m+1).
點(diǎn)評:本題考查了數(shù)列知識的綜合應(yīng)用,解題時(shí)要認(rèn)真審題,弄清題目中所給的條件是什么,細(xì)心解答,這樣才不會出現(xiàn)錯(cuò)誤.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•昌平區(qū)一模)復(fù)數(shù)
2i
1-i
的虛部是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•昌平區(qū)一模)已知函數(shù)f(x)=
1
3
x3-a2x+
1
2
a
(a∈R).
(Ⅰ)若a=1,求函數(shù)f(x)在[0,2]上的最大值;
(Ⅱ)若對任意x∈(0,+∞),有f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•昌平區(qū)一模)設(shè)定義域?yàn)镽的函數(shù)f(x)滿足以下條件;則以下不等式一定成立的是( 。
(1)對任意x∈R,f(x)+f(-x)=0;
(2)對任意x1,x2∈[1,a],當(dāng)x2>x1時(shí),有f(x2)>f(x1).
①f(a)>f(0)
②f(
1+a
2
)>f(
a

③f(
1-3a
1+a
)>f(-3)
④f(
1-3a
1+a
)>f(-a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•昌平區(qū)一模)為了解甲、乙兩廠的產(chǎn)品的質(zhì)量,從兩廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取各10件,測量產(chǎn)品中某種元素的含量(單位:毫克).下表是測量數(shù)據(jù)的莖葉圖:
規(guī)定:當(dāng)產(chǎn)品中的此種元素含量滿足≥18毫克時(shí),該產(chǎn)品為優(yōu)等品.
(Ⅰ)試用上述樣本數(shù)據(jù)估計(jì)甲、乙兩廠生產(chǎn)的優(yōu)等品率;
(Ⅱ)從乙廠抽出的上述10件產(chǎn)品中,隨機(jī)抽取3件,求抽到的3件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及其數(shù)學(xué)期望E(ξ);
(Ⅲ)從上述樣品中,各隨機(jī)抽取3件,逐一選取,取后有放回,求抽到的優(yōu)等品數(shù)甲廠恰比乙廠多2件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•昌平區(qū)一模)已知橢圓M的對稱軸為坐標(biāo)軸,離心率為
2
2
,且拋物線y2=4
2
x
的焦點(diǎn)是橢圓M的一個(gè)焦點(diǎn).
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)直線l與橢圓M相交于A、B兩點(diǎn),以線段OA,OB為鄰邊作平行四邊形OAPB,其中點(diǎn)P在橢圓M上,O為坐標(biāo)原點(diǎn).求點(diǎn)O到直線l的距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案