【題目】函數(shù)的部分圖象如圖所示,其中,,.
(Ⅰ)求的解析式;
(Ⅱ)求在區(qū)間上的最大值和最小值;
(Ⅲ)寫出的單調遞增區(qū)間.
【答案】(Ⅰ);(Ⅱ)最大值為,最小值為;(Ⅲ)單調遞增區(qū)間為.
【解析】
(Ⅰ)由函數(shù)的最大值可求得的值,從圖象可得出函數(shù)的最小正周期,可求得的值,再將點的坐標代入函數(shù)的解析式,結合可求得的值,進而可求得函數(shù)的解析式;
(Ⅱ)由可求得的取值范圍,結合正弦函數(shù)的基本性質可求得函數(shù)在區(qū)間上的最大值和最小值;
(Ⅲ)解不等式,可得出函數(shù)的單調遞增區(qū)間.
(Ⅰ)由圖象可得,
且函數(shù)的最小正周期為,,
,得,
,,,可得.
因此,;
(Ⅱ),,
所以,當時,函數(shù)取得最小值,即;
當時,函數(shù)取得最大值,即.
因此,函數(shù)在區(qū)間上的最大值為,最小值為;
(Ⅲ)解不等式,得.
所以,函數(shù)的單調遞增區(qū)間為.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,圓:,直線:,直線過點,傾斜角為,以原點為極點,軸的正半軸為極軸建立極坐標系.
(1)寫出直線與圓的交點極坐標及直線的參數(shù)方程;
(2)設直線與圓交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值.
(2)是否存在實數(shù),使得函數(shù)在上的最小值為0?若存在,試求出的值:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)若函數(shù)在上是單調函數(shù),求實數(shù)的取值范圍;
(2)當時,是否存在,使得和的圖象在處的切線互相平行,若存在,請給予證明,若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系(),點為曲線上的動點,點在線段的延長線上,且滿足,點的軌跡為。
(Ⅰ)求的極坐標方程;
(Ⅱ)設點的極坐標為,求面積的最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖甲,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設點E、F分別為棱AC、AD的中點.
(1)求證:DC⊥平面ABC;
(2)求BF與平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了了解本公司職員的早餐費用情況,抽樣調査了100位職員的早餐日平均費用(單位:元),得到如圖所示的頻率分布直方圖,圖中標注的數(shù)字模糊不清.
(1)試根據(jù)頻率分布直方圖求的值,并估計該公司職員早餐日平均費用的眾數(shù);
(2) 已知該公司有1000名職員,試估計該公司有多少職員早餐日平均費用多于8元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓離心率為,點與橢圓的左、右頂點可以構成等腰直角三角形.點C是橢圓的下頂點,經(jīng)過橢圓中心O的一條直線與橢圓交于A,B兩個點(不與點C重合),直線CA,CB分別與x軸交于點D,E.
(1)求橢圓的標準方程.
(2)判斷的大小是否為定值,并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com