10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}a-2x,x≤0\\{log_4}x,x>0\end{array}$且f(f($\frac{1}{4}$))=5,則a=3.

分析 求出f($\frac{1}{4}$)=$lo{g}_{4}\frac{1}{4}$=-1,從而f(f($\frac{1}{4}$))=f(-1)=a-2×(-1)=a+2,由此利用f(f($\frac{1}{4}$))=5,能求出a.

解答 解:∵f(x)=$\left\{\begin{array}{l}a-2x,x≤0\\{log_4}x,x>0\end{array}$,
∴f($\frac{1}{4}$)=$lo{g}_{4}\frac{1}{4}$=-1,
∴f(f($\frac{1}{4}$))=f(-1)=a-2×(-1)=a+2,
∵f(f($\frac{1}{4}$))=5,
∴a+2=5,解得a=3.
故答案為:3.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)$y=4-x-\frac{1}{x};(x≥2)$的最大值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖所示的程序框圖,若輸出的S=41,則判斷框內(nèi)應(yīng)填入的條件是k>4?.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知sinα+cosα=-$\frac{1}{5}$,且α∈(-$\frac{π}{2}$,$\frac{π}{2}$),求sinα,cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如果直線l,m與平面α,β,γ滿足:m在平面α內(nèi),且m⊥γ,l=β∩γ,l∥α,那么必有( 。
A.α丄γ,m∥βB.α 丄γ,l丄mC.m∥β,l丄mD.α∥β,γ丄β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R恒有f(x+1)=f(x-1),已知當(dāng)x∈[0,1]時(shí),f(x)=(${\frac{1}{2}}$)1-x,則
①2是函數(shù)f(x)的一個(gè)周期;
②函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
③函數(shù)f(x)的最大值是1,最小值是0;
④x=1是函數(shù)f(x)的一個(gè)對(duì)稱軸;
其中所有正確命題的序號(hào)是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知二次函數(shù)f(x)=ax2+2ax+1在區(qū)間[-2,3]上的最大值為5,則a的值為$\frac{4}{15}$或-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知兩定點(diǎn)M(0,1),N(1,2),平面內(nèi)一動(dòng)點(diǎn)P到M的距離與P到N的距離之比為$\sqrt{2}$,直線y=kx-1與點(diǎn)P的軌跡交于A,B兩點(diǎn).
(1)求點(diǎn)P的軌跡方程,并指出是什么圖形;
(2)求實(shí)數(shù)k的取值范圍;
(3)是否存在k使得$\overrightarrow{OA}$•$\overrightarrow{OB}$=11(O為坐標(biāo)原點(diǎn)),若存在求出k的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知二次函數(shù)f(x)滿足:f(0)=3;f(x+1)=f(x)+2x.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)y=f(x)在[t,t+1]上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案