雙曲線與橢圓有共同的焦點(diǎn)F1(0,-5),F(xiàn)2(0,5),點(diǎn)P(3,4)是雙曲線的漸近線與橢圓的一個(gè)交點(diǎn),求雙曲線與橢圓的方程.
分析:先利用雙曲線與橢圓有共同的焦點(diǎn)F1(0,-5),F(xiàn)2(0,5),設(shè)出對(duì)應(yīng)的雙曲線和橢圓方程,再利用點(diǎn)P(3,4)適合雙曲線的漸近線和橢圓方程,就可求出雙曲線與橢圓的方程.
解答:解:由共同的焦點(diǎn)F1(0,-5),F(xiàn)2(0,5),
可設(shè)橢圓方程為
y2
a2
+
x2
a2-25
=1
,雙曲線方程為
y2
b2
-
x2
25-b2
=1
,
點(diǎn)P(3,4)在橢圓上,
16
a2
+
9
a2-25
=1,a2=40
,
雙曲線的過點(diǎn)P(3,4)的漸近線為y=±
25-b2
b
x
,有4=
25-b2
b
×3
,b2=9
所以橢圓方程為:
y2
40
+
x2
15
=1
;雙曲線方程為:
y2
16
-
x2
9
=1
點(diǎn)評(píng):本題考查雙曲線與橢圓的標(biāo)準(zhǔn)方程的求法.在求雙曲線與橢圓的標(biāo)準(zhǔn)方程時(shí),一定要先分析焦點(diǎn)所在位置,再設(shè)方程,避免出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線與橢圓有共同的焦點(diǎn),點(diǎn)是雙曲線的漸近線與橢圓的一個(gè)交點(diǎn),求雙曲線與橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線與橢圓有共同的焦點(diǎn),點(diǎn)是雙曲線的漸近線與橢圓的一個(gè)交點(diǎn),求雙曲線與橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線與橢圓有共同的焦點(diǎn),且與橢圓的一個(gè)交點(diǎn)的縱坐標(biāo)為,求雙曲線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年湖北省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:填空題

以下四個(gè)命題中:

設(shè)為兩個(gè)定點(diǎn),為非零常數(shù)。,則動(dòng)點(diǎn)的軌跡方程為雙曲線。

過定圓上一定點(diǎn)作圓的動(dòng)點(diǎn)弦為坐標(biāo)原點(diǎn),若則動(dòng)點(diǎn)的軌跡為橢圓。

方程的兩根可分別作為橢圓與雙曲線的離心率。

雙曲線與橢圓有共同的焦點(diǎn)。

其中真命題的序號(hào)為          。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案