【題目】已知點(diǎn)到拋物線Cy2=2px準(zhǔn)線的距離為2

(Ⅰ)求C的方程及焦點(diǎn)F的坐標(biāo);

(Ⅱ)設(shè)點(diǎn)P關(guān)于原點(diǎn)O的對稱點(diǎn)為點(diǎn)Q,過點(diǎn)Q作不經(jīng)過點(diǎn)O的直線與C交于兩點(diǎn)A,B,直線PA,PB,分別交x軸于M,N兩點(diǎn),求的值.

【答案】(Ⅰ)C的方程為,焦點(diǎn)F的坐標(biāo)為(1,0);(2

【解析】

)根據(jù)拋物線定義求出p,即可求C的方程及焦點(diǎn)F的坐標(biāo);
)設(shè)點(diǎn)A(x1,y1),B(x2,y2),由已知得Q(1,2),由題意直線AB斜率存在且不為0,設(shè)直線AB的方程為y=k(x+1)2(k≠0),與拋物線聯(lián)立可得ky2-4y+4k-8=0,利用韋達(dá)定理以及弦長公式,轉(zhuǎn)化求解|MF||NF|的值.

(Ⅰ)由已知得,所以p=2.

所以拋物線C的方程為,焦點(diǎn)F的坐標(biāo)為(1,0);

(II)設(shè)點(diǎn)A(x1,y1),B(x2,y2),由已知得Q(1,2)

由題意直線AB斜率存在且不為0.

設(shè)直線AB的方程為y=k(x+1)2(k≠0).

,

,.

因?yàn)辄c(diǎn)A,B在拋物線C,所以

,.

因?yàn)?/span>PFx軸,

所以

,

所以|MF||NF|的值為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過點(diǎn),直線與橢圓交于兩點(diǎn)(兩點(diǎn)不是左右頂點(diǎn)),若直線的斜率為時(shí),弦的中點(diǎn)在直線.

1)求橢圓的方程;

2)若在橢圓上有相異的兩點(diǎn)三點(diǎn)不共線),為坐標(biāo)原點(diǎn),且直線,直線,直線的斜率滿足,求證:是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要制作一個(gè)如圖的框架(單位:米).要求所圍成的總面積為19.5(),其中是一個(gè)矩形, 是一個(gè)等腰梯形,梯形高,設(shè)米, 米.

(1)求關(guān)于的表達(dá)式;

(2)如何設(shè)計(jì),的長度,才能使所用材料最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖1,在RtABC中,∠ACB=30°,∠ABC=90°DAC中點(diǎn),AEBDE,延長AEBCF,將ABD沿BD折起,使平面ABD平面BCD,如圖2所示。

(Ⅰ)求證:AE平面BCD;

(Ⅱ)求二面角A-DC-B的余弦值;

(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結(jié)果,不要求過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體的棱長為,點(diǎn)分別棱樓的中點(diǎn),下列結(jié)論中正確的是(

A.四面體的體積等于B.平面

C.平面D.異面直線所成角的正切值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分配名工人去個(gè)不同的居民家里檢查管道,要求名工人都分配出去,并且每名工人只去一個(gè)居民家,且每個(gè)居民家都要有人去檢查,那么分配的方案共有(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,拋物線上的點(diǎn)到準(zhǔn)線的最小距離為2.

1)求拋物線的方程;

2)若過點(diǎn)作互相垂直的兩條直線,,與拋物線交于兩點(diǎn),與拋物線交于,兩點(diǎn),,分別為弦,的中點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若方程有兩個(gè)不同的實(shí)數(shù)解,則b的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD中,以D為原點(diǎn)建立空間直角坐標(biāo)系,E為B的中點(diǎn),F(xiàn)為的中點(diǎn),則下列向量中,能作為平面AEF的法向量的是( )

A. (1,-2,4) B. (-4,1,-2)

C. (2,-2,1) D. (1,2,-2)

查看答案和解析>>

同步練習(xí)冊答案