【題目】如圖,在四棱錐中,底面為直角梯形,底面,,的中點(diǎn),為棱的中點(diǎn).

I)證明:平面;

II)已知,求點(diǎn)到平面的距離.

【答案】(I)證明見解析;(II).

【解析】

試題分析:I)構(gòu)造的中位線,由中位線平行定理可得,又平面,所以即可證出平面;II)由(I)知平面,所以點(diǎn)到平面的距離等于點(diǎn)到平面的距離。利用等體積法得,求出的面積,即可得點(diǎn)到平面的距離.

試題解析:I)證明:如圖,連接,連接.

,的中點(diǎn),;

四邊形為平行四邊形. 的中點(diǎn). …………………(3分)

的中點(diǎn),.…………………(5分)

平面,

平面.…………………(6分)

II)由(I)可知,平面.

點(diǎn)到平面的距離等于點(diǎn)到平面的距離,所以,

的中點(diǎn),連接,所以,,………(7分)

底面,所以底面.

,,所以,,,,………(10分)

所以,………(11分)

則點(diǎn)到平面的距離………(12分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數(shù).

(I)求f(0)的值和實(shí)數(shù)m的值;

(II)當(dāng)m=1時(shí),判斷函數(shù)f(x)在(﹣1,1)上的單調(diào)性,并給出證明;

(III)若且f(b﹣2)+f(2b﹣2)>0,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知奇函數(shù)在區(qū)間上是增函數(shù),且最大值為10,最小值為4,則在區(qū)間的最大值、最小值分別是( )

A. -4,-10 B. 4,-10

C. 10,4 D. 不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示, 四棱錐底面是直角梯形, 底面, 的中點(diǎn), .

(Ⅰ)證明: ;

(Ⅱ)證明: ;

(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若存在實(shí)數(shù),使=成立,則稱的不動(dòng)點(diǎn).

⑴當(dāng)時(shí),求的不動(dòng)點(diǎn);

(2)當(dāng)時(shí),函數(shù)內(nèi)有兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;

(3)若對(duì)于任意實(shí)數(shù),函數(shù)恒有兩個(gè)不相同的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

I)求函數(shù)的單調(diào)區(qū)間;

II)若上恒成立,求實(shí)數(shù)的取值范圍;

III)在(II)的條件下,對(duì)任意的,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證此結(jié)論,從全體組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題、代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進(jìn)行解答,選題情況統(tǒng)計(jì)如下表:(單位:人)

立體幾何題

代數(shù)題

總計(jì)

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計(jì)

30

20

50

(1)能否有97.5%以上的把握認(rèn)為“喜歡空間想象”與“性別”有關(guān)?

(2)經(jīng)統(tǒng)計(jì)得,選擇做立體幾何題的學(xué)生正答率為,且答對(duì)的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做立體幾何題且答錯(cuò)的學(xué)生中任意抽取兩人對(duì)他們的答題情況進(jìn)行研究,求恰好抽到男女生各一人的概率.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高三年級(jí)有學(xué)生1 000名,經(jīng)調(diào)查,其中750名同學(xué)經(jīng)常參加體育鍛煉(稱為A類同學(xué)),另外250名同學(xué)不經(jīng)常參加體育鍛煉(稱為B類同學(xué)),現(xiàn)用分層抽樣方法(按A類、B類分兩層)從該年級(jí)的學(xué)生中共抽查100名同學(xué),如果以身高達(dá)165 cm作為達(dá)標(biāo)的標(biāo)準(zhǔn),對(duì)抽取的100名學(xué)生,得到以下列聯(lián)表:

身高達(dá)標(biāo)

身高不達(dá)標(biāo)

總計(jì)

經(jīng)常參加體育鍛煉

40

不經(jīng)常參加體育鍛煉

15

總計(jì)

100

(1)完成上表;

(2)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為經(jīng)常參加體育鍛煉與身高達(dá)標(biāo)有關(guān)系(K2的觀測(cè)值精確到0.001)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:

年 份

2008

2009

2010

2011

2012

2013

2014

年份代號(hào)t

1

2

3

4

5

6

7

人均純收入y

2.7

3.6

3.3

4.6

5.4

5.7

6.2

對(duì)變量ty進(jìn)行相關(guān)性檢驗(yàn),得知ty之間具有線性相關(guān)關(guān)系.

(1)求y關(guān)于t的線性回歸方程;

(2)預(yù)測(cè)該地區(qū)2017年的居民人均純收入.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

,

查看答案和解析>>

同步練習(xí)冊(cè)答案