已知函數(shù)f(x)在定義在R上的奇函數(shù),若對(duì)于任意給定的不等實(shí)數(shù)x1、x2,不等式x1f(x1)+x2f(x2)<x1f(x2)+x2f(x1)恒成立,則不等式f(x)<0的解集為( 。
A、(-∞,0)
B、(0,+∞)
C、(-∞,10)
D、(1,+∞)
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先將不等式轉(zhuǎn)化為(x1-x2)[f(x1)-f(x2)]<0恒成立得到函數(shù)f(x)是定義在R上的減函數(shù);再利用函數(shù)f(x)是定義在R上的奇函數(shù)得到函數(shù)f(x)過(0,0)點(diǎn),即可求出不等式f(x)<0的解集.
解答: 解:∵對(duì)于任意給定的不等實(shí)數(shù)x1,x2,不等式x1f(x1)+x2f(x2)<x1f(x2)+x2f(x1)恒成立,
∴不等式等價(jià)為(x1-x2)[f(x1)-f(x2)]<0恒成立,
即函數(shù)f(x)是定義在R上的減函數(shù).
∵函數(shù)f(x)是定義在R上的奇函數(shù),
∴函數(shù)f(x)過點(diǎn)(0,0);
故不等式f(x)<0,
解得x>0.
故選:B.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性和單調(diào)性的綜合應(yīng)用問題.將不等式進(jìn)行轉(zhuǎn)化判斷出函數(shù)f(x)的單調(diào)性以及利用奇函數(shù)的性質(zhì)得到函數(shù)f(x)過(0,0)點(diǎn)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

證明:1+
1
3
+
1
7
+
1
15
+…+
1
2n-1
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等腰三角形三個(gè)頂點(diǎn)的坐標(biāo)分別是A(0,3),B(-2,0),C(2,0),中線AO(O為原點(diǎn))所在的直線的方程是x=0嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD四邊形ABCD為正方形,AB=4,PA=3,A點(diǎn)在PD上的射影為G點(diǎn).
(1)求證:AG⊥平面PDC;
(2)在棱AB上是否存在一點(diǎn)E,使得AG∥平面PEC.若存在,求出AE的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanθ=2,則
sin(
π
2
+θ)-cos(π-θ)
sin(
π
2
+θ)-sin(π-θ)
=( 。
A、2
B、-2
C、0
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體三視圖如圖所示,求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:cos243°+cos244°+cos245°+cos246°+cos247°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用三角函數(shù)線,寫出滿足下列條件的角α的集合:
(1)sinα≥
2
2

(2)cosα≤
1
2
;
(2)|cosα|>|sinα|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正方體ABCD-A1B1C1D1中,M、N分別為AB、B1C的中點(diǎn),試用向量法判斷MN與平面A1BD的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案