【題目】已知等差數(shù)列{an}滿足a3=5,a5﹣2a2=3,又等比數(shù)列{bn}中,b1=3且公比q=3.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若cn=an+bn , 求數(shù)列{cn}的前n項和Sn

【答案】解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,
則由題設(shè)得,
解得a1=1,d=2,
∴an=1+(n﹣1)×2=2n﹣1,
∵數(shù)列{bn}是以b1=3為首項,公比為3的等比數(shù)列,

(Ⅱ)∵cn=an+bn , ∴
∴Sn=1+3+5+7+…+(2n﹣1)+(3+32+33+…+3n
=
=
【解析】(Ⅰ)利用等差數(shù)列的通項公式由已知條件求出首項和公比,由此能求出等差數(shù)列{an}的通項公式;由數(shù)列{bn}是以b1=3為首項,公比為3的等比數(shù)列,能求出{bn}的通項公式.
(Ⅱ)由 , 利用分組求和法能求出數(shù)列{cn}的前n項和Sn
【考點精析】利用數(shù)列的前n項和和等差數(shù)列的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知數(shù)列{an}的前n項和sn與通項an的關(guān)系;在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

喜愛打籃球

不喜愛打籃球

合計

男生

女生

合計

已知在全部人中隨機抽取人抽到喜愛打籃球的學(xué)生的概率為.

(1)請將上面的列聯(lián)表補充完整;

(2)是否有的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;

下面的臨界值表供參考:

(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,b>0,函數(shù)f(x)=x2+(ab﹣a﹣4b)x+ab是偶函數(shù),則f(x)的圖象與y軸交點縱坐標(biāo)的最小值為( 。
A.16
B.8
C.4
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)共有5000人,其中男生3500人,女生1500人,為了了解該校學(xué)生每周平均體育鍛煉時間的情況以及該校學(xué)生每周平均體育鍛煉時間是否與性別有關(guān),現(xiàn)在用分層抽樣的方法從中收集300位學(xué)生每周平均體育鍛煉時間的樣本數(shù)據(jù)(單位:小時),其頻率分布直方圖如下:

附:,其中.

已知在樣本數(shù)據(jù)中,有60位女生的每周平均體育鍛煉時間超過4小時,根據(jù)獨立性檢驗原理,我們( )

A. 沒有理由認(rèn)為“該校學(xué)生每周平均體育鍛煉時間與性別有關(guān)”

B. 的把握認(rèn)為“該校學(xué)生每周平均體育鍛煉時間與性別有關(guān)”

C. 的把握認(rèn)為“該校學(xué)生每周平均體育鍛煉時間與性別無關(guān)”

D. 的把握認(rèn)為“該校學(xué)生每周平均體育鍛煉時間與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣1|+|x﹣3|
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若不等式f(x)≤a(x+)的解集非空,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油

D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex·(a++lnx),其中aR.

(I)若曲線y=f(x)在x=1處的切線與直線y=-垂直,求a的值;

(II)當(dāng)a(0,ln2)時,證明:f(x)存在極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中,是實數(shù)常數(shù),).

(1)若,函數(shù)的圖象關(guān)于點成中心對稱,求,的值;

(2)若函數(shù)滿足條件(1),且對任意,總有,求的取值范圍;

(3)若,函數(shù)是奇函數(shù),,,且對任意時,不等式恒成立,求負(fù)實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)設(shè) 是偶函數(shù),求實數(shù)的值;

(2)設(shè),求函數(shù)在區(qū)間上的值域;

(3)若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案