【題目】已知等差數(shù)列{an}滿足a3=5,a5﹣2a2=3,又等比數(shù)列{bn}中,b1=3且公比q=3.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若cn=an+bn , 求數(shù)列{cn}的前n項和Sn .
【答案】解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,
則由題設(shè)得,
解得a1=1,d=2,
∴an=1+(n﹣1)×2=2n﹣1,
∵數(shù)列{bn}是以b1=3為首項,公比為3的等比數(shù)列,
∴.
(Ⅱ)∵cn=an+bn , ∴,
∴Sn=1+3+5+7+…+(2n﹣1)+(3+32+33+…+3n)
=
=.
【解析】(Ⅰ)利用等差數(shù)列的通項公式由已知條件求出首項和公比,由此能求出等差數(shù)列{an}的通項公式;由數(shù)列{bn}是以b1=3為首項,公比為3的等比數(shù)列,能求出{bn}的通項公式.
(Ⅱ)由 , 利用分組求和法能求出數(shù)列{cn}的前n項和Sn .
【考點精析】利用數(shù)列的前n項和和等差數(shù)列的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知數(shù)列{an}的前n項和sn與通項an的關(guān)系;在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | |||
女生 | |||
合計 |
已知在全部人中隨機抽取人抽到喜愛打籃球的學(xué)生的概率為.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,b>0,函數(shù)f(x)=x2+(ab﹣a﹣4b)x+ab是偶函數(shù),則f(x)的圖象與y軸交點縱坐標(biāo)的最小值為( 。
A.16
B.8
C.4
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)共有5000人,其中男生3500人,女生1500人,為了了解該校學(xué)生每周平均體育鍛煉時間的情況以及該校學(xué)生每周平均體育鍛煉時間是否與性別有關(guān),現(xiàn)在用分層抽樣的方法從中收集300位學(xué)生每周平均體育鍛煉時間的樣本數(shù)據(jù)(單位:小時),其頻率分布直方圖如下:
附:,其中.
已知在樣本數(shù)據(jù)中,有60位女生的每周平均體育鍛煉時間超過4小時,根據(jù)獨立性檢驗原理,我們( )
A. 沒有理由認(rèn)為“該校學(xué)生每周平均體育鍛煉時間與性別有關(guān)”
B. 有的把握認(rèn)為“該校學(xué)生每周平均體育鍛煉時間與性別有關(guān)”
C. 有的把握認(rèn)為“該校學(xué)生每周平均體育鍛煉時間與性別無關(guān)”
D. 有的把握認(rèn)為“該校學(xué)生每周平均體育鍛煉時間與性別有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣1|+|x﹣3|
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若不等式f(x)≤a(x+)的解集非空,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油
D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex·(a++lnx),其中a∈R.
(I)若曲線y=f(x)在x=1處的切線與直線y=-垂直,求a的值;
(II)當(dāng)a∈(0,ln2)時,證明:f(x)存在極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中,,,是實數(shù)常數(shù),).
(1)若,函數(shù)的圖象關(guān)于點成中心對稱,求,的值;
(2)若函數(shù)滿足條件(1),且對任意,總有,求的取值范圍;
(3)若,函數(shù)是奇函數(shù),,,且對任意時,不等式恒成立,求負(fù)實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)設(shè) ,若是偶函數(shù),求實數(shù)的值;
(2)設(shè),求函數(shù)在區(qū)間上的值域;
(3)若不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com