雙曲線-=1(a>0,b>0)的一條漸近線方程為y=ex(e為雙曲線離心率),則有( )
A.b=2a
B.b=a
C.a(chǎn)=2b
D.a(chǎn)=b
【答案】分析:根據(jù)雙曲線的方程確定漸近線方程的表達(dá)式,進(jìn)而根據(jù)其漸近線方程求得c和b的關(guān)系,進(jìn)而利用a2+b2=c2求得a和b的關(guān)系.
解答:解:由雙曲線漸近線方程可得,=e,
=×,
∴c=b,又a2+b2=c2
∴a2+b2=5b2,
∴a=2b、
故選C
點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).考查了學(xué)生對(duì)雙曲線方程中漸近線方程,a,b和c的關(guān)系等基礎(chǔ)知識(shí)的把握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:《第2章 圓錐曲線與方程》2013年單元測(cè)試卷(梅河口五中)(解析版) 題型:解答題

如圖,雙曲線=1(a>0,b>0)的離心率為、F2分別為左、右焦點(diǎn),M為左準(zhǔn)線與漸近線在第二象限內(nèi)的交點(diǎn),且
(I)求雙曲線的方程;
(II)設(shè)A(m,0)和(0<m<1)是x軸上的兩點(diǎn).過(guò)點(diǎn)A作斜率不為0的直線l,使得l交雙曲線于C、D兩點(diǎn),作直線BC交雙曲線于另一點(diǎn)E.證明直線DE垂直于x軸.中心O為圓心,分別以a和b為半徑作大圓和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省岳陽(yáng)一中高三(上)第四次月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線-=1(a>0,b>0)的焦點(diǎn),若在雙曲線上存在點(diǎn)P,滿足∠F1PF2=60°,|OP|=a,則該雙曲線的漸近線方程為( )
A.x±y=0
B.x±y=0
C.x±y=0
D.x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省南通市啟東市匯龍中學(xué)高二(上)第二次學(xué)情調(diào)查數(shù)學(xué)試卷(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考數(shù)學(xué)試卷精編:8.2 雙曲線(解析版) 題型:選擇題

設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線-=1(a>0,b>0)的焦點(diǎn),若在雙曲線上存在點(diǎn)P,滿足∠F1PF2=60°,|OP|=a,則該雙曲線的漸近線方程為( )
A.x±y=0
B.x±y=0
C.x±y=0
D.x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年北京市高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案