2.在△ABC中,角A、B、C的對(duì)邊分別是a、b、c,若$b-\frac{1}{2}c=acosC$
(1)求角A;
(2)若4(b+c)=3bc,$a=2\sqrt{3}$,求△ABC的面積S.

分析 (1)由正弦定理化簡(jiǎn)已知可得:$sinB-\frac{1}{2}sinC=sinAcosC$,結(jié)合三角形內(nèi)角和定理及三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)可得$cosA=\frac{1}{2}$,結(jié)合A為內(nèi)角,即可求A的值.
(2)由余弦定理及已知可解得:b+c=6,從而可求bc=8,根據(jù)三角形面積公式即可得解.

解答 (本題滿分為12分)
解:(1)由正弦定理得:$sinB-\frac{1}{2}sinC=sinAcosC$…(2分)
又∵sinB=sin(A+C)
∴$sin(A+C)-\frac{1}{2}sinC=sinAcosC$
即 $cosAsinC=\frac{1}{2}sinC$…(4分)
又∵sinC≠0
∴$cosA=\frac{1}{2}$
又∵A是內(nèi)角
∴A=60°…(6分)
(2)由余弦定理得:a2=b2+c2-2bccosA=b2+c2-bc=(b+c)2-3bc…(8分)
∴(b+c)2-4(b+c)=12得:b+c=6
∴bc=8…(10分)
∴S=$\frac{1}{2}bcsinA=\frac{1}{2}×8×\frac{{\sqrt{3}}}{2}=2\sqrt{3}$…(12分)

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,三角形面積公式,三角形內(nèi)角和定理及三角函數(shù)恒等變換的應(yīng)用,熟練掌握相關(guān)公式定理是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列命題是假命題的是( 。
A.若$\overrightarrow{a}•\overrightarrow$=0($\overrightarrow{a}$≠0,$\overrightarrow$≠0),則$\overrightarrow{a}⊥\overrightarrow$B.若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$
C.若ac2>bc2,則a>bD.若α=60°,則cosα=$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)集合$\left\{{a,\frac{a},1}\right\}$={a2,a+b,0},則a2014+b2015=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.用min{a,b}表示a,b兩數(shù)中的最小值,若函數(shù)f(x)=min{|x-3|,|x+1|},則不等式f(x)<f(0)的解集是(-2,0)∪(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)y=f(x)在區(qū)間(0,3)上為增函數(shù),y=g(x)在區(qū)間(2,5)上為減函數(shù),則函數(shù)y=f(g(x))在區(qū)間(2,3)上為( 。
A.增函數(shù)B.減函數(shù)C.先增后減D.單調(diào)性不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.任取x∈[0,π],則使$sinx>\frac{1}{2}$的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=ax5+bx3+cx-18,且f(-3)=32,那么f(3)=-68.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知集合U={2,4,5,7,8},A={4,8},則∁UA={2,5,7}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)f(x)是一個(gè)二次項(xiàng)系數(shù)為正的二次函數(shù),f(x+3)=f(-1-x)對(duì)任意x∈R都成立,若向量$\overrightarrow{a}$=($\frac{1}{2}$,2sinx),$\overrightarrow$=(2,sinx),$\overrightarrow{c}$=(2,1),$\overrightarrowc2camc4$=(1,cos2x),求f($\overrightarrow{a}$•$\overrightarrow$)-f($\overrightarrow{c}$•$\overrightarrow2x3j30n$)>0的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案