【題目】定義在D上的函數(shù)f(x),如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)
(1)若f(x)是奇函數(shù),求m的值;
(2)當(dāng)m=1時(shí),求函數(shù)f(x)在(﹣∞,0)上的值域,并判斷函數(shù)f(x)在(﹣∞,0)上是否為有界函數(shù),請(qǐng)說明理由;
(3)若函數(shù)f(x)在[0,1]上是以3為上界的函數(shù),求實(shí)數(shù)m的取值范圍.

【答案】
(1)解:由f(x)是奇函數(shù),則f(﹣x)=﹣f(x)

,即(1﹣m2)2x=0,∴m2﹣1=0,m=±1


(2)解:當(dāng)m=1時(shí),

∵x<0,∴0<2x<1,∴f(x)∈(0,1),滿足|f(x)|≤1.

∴f(x)在(﹣∞,0)上為有界函數(shù)


(3)解:若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),則有|f(x)|≤3在[0,1]上恒成立.

∴﹣3≤f(x)≤3,

,

,化簡(jiǎn)得:

,

上面不等式組對(duì)一切x∈[0,1]都成立,


【解析】(1)根據(jù)函數(shù)奇偶性的性質(zhì)建立方程關(guān)系進(jìn)行求解即可.(2)根據(jù)分式函數(shù)的性質(zhì)以及有界函數(shù)的定義進(jìn)行求解判斷即可.(3)根據(jù)函數(shù)的有界性建立不等式關(guān)系,利用不等式恒成立進(jìn)行求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點(diǎn), 求實(shí)數(shù)的取值范圍;

(Ⅱ) 證明: 當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,我國(guó)南海某處的一個(gè)圓形海域上有四個(gè)小島,小島B與小島A、小島C相距都為5n mile,與小島D相距為 n mile.小島A對(duì)小島B與D的視角為鈍角,且
(Ⅰ)求小島A與小島D之間的距離和四個(gè)小島所形成的四邊形的面積;
(Ⅱ)記小島D對(duì)小島B與C的視角為α,小島B對(duì)小島C與D的視角為β,求sin(2α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的方程為:x2+y2﹣2x﹣4y+m=0.
(1)求m的取值范圍;
(2)若圓C與直線3x+4y﹣6=0交于M、N兩點(diǎn),且|MN|=2 ,求m的值;
(3)設(shè)直線x﹣y﹣1=0與圓C交于A、B兩點(diǎn),是否存在實(shí)數(shù)m,使得以AB為直徑的圓過原點(diǎn),若存在,求出實(shí)數(shù)m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)求f(x)+f(1﹣x)的值;
(2)若數(shù)列{an}滿足an=f(0)+f( )+f( )+…+f( )+f(1)(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{bn}滿足bn=2nan , Sn是數(shù)列{bn}的前n項(xiàng)和,是否存在正實(shí)數(shù)k,使不等式knSn>3bn對(duì)于一切的n∈N*恒成立?若存在,請(qǐng)求出k的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合M={(x,y)|y= },N={(x,y)|x﹣y+m=0},若M∩N的子集恰有4個(gè),則m的取值范圍是(
A.(﹣2 ,2
B.[﹣2,2
C.(﹣2 ,﹣2]
D.[2,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】4月23人是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書謎”,低于60分鐘的學(xué)生稱為“非讀書謎”
附:K2= n=a+b+c+d

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828


(1)求x的值并估計(jì)全校3000名學(xué)生中讀書謎大概有多少?(經(jīng)頻率視為頻率)
(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書謎”與性別有關(guān)?

非讀書迷

讀書迷

合計(jì)

15

45

合計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為曲線的參數(shù)方程是為參數(shù)).

(1)求直線和曲線的普通方程;

(2)設(shè)直線和曲線交于兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn)O,軸正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)C的極坐標(biāo)為,若直線l經(jīng)過點(diǎn)P,且傾斜角為,圓C的半徑為4.

(1).求直線l的參數(shù)方程及圓C的極坐標(biāo)方程;

(2).試判斷直線l與圓C有位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案