【題目】曲線是平面內(nèi)與兩個(gè)定點(diǎn), 的距離之積等于的點(diǎn)的軌跡.給出下列命題:
①曲線過坐標(biāo)原點(diǎn);
②曲線關(guān)于坐標(biāo)軸對(duì)稱;
③若點(diǎn)在曲線上,則的周長有最小值;
④若點(diǎn)在曲線上,則面積有最大值.
其中正確命題的個(gè)數(shù)為
A. B. C. D.
【答案】C
【解析】設(shè)曲線C上任意一點(diǎn)的坐標(biāo)為P(x,y),則[(x+2)2+y2][(x-2)2+y2]=81,
①把x=0,y=0代入上式得1=81,故曲線C不經(jīng)過原點(diǎn),故①錯(cuò)誤;
②把(-x,y)代入上式得[(-x+2)2+y2][(-x-2)2+y2]=[(x-2)2+y2][(x+2)2+y2]=81,
∴曲線C關(guān)于y軸對(duì)稱,
把(x,-y)代入上式顯然也成立,故曲線C關(guān)于x軸對(duì)稱,故②正確;
③∵|PF1|+|PF2|≥2=6
∴△F1PF2的周長為|PF1|+|PF2|+|F1F2|≥6+4=10,故③正確;
④△F1PF2面積S=,∴S2=4y2,
∵[(x+2)2+y2][(x-2)2+y2]=81,∴y4+(2x2+8)y2+(x2-4)2-81=0,
∴y2=--x2-4或y2=---x2-4(舍).
設(shè)=t則x2=
∴y2=t--4=-
∴當(dāng)t=12時(shí),y2取得最大值,即S的最大值為, 故④錯(cuò)誤.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海濱浴場每年夏季每天的海浪高度y(米)是時(shí)間x(0≤x≤24,單位:小時(shí))的函數(shù),記作y=f(x),下表是每年夏季每天某些時(shí)刻的浪高數(shù)據(jù):
x(時(shí)) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 |
(1)經(jīng)觀察發(fā)現(xiàn)可以用三角函數(shù)y=Acosωx+b對(duì)這些數(shù)據(jù)進(jìn)行擬合,求函數(shù)f(x)的表達(dá)式;
(2)浴場規(guī)定,每天白天當(dāng)海浪高度高于1.25米時(shí),才對(duì)沖浪愛好者開放,求沖浪者每天白天可以在哪個(gè)時(shí)段到該浴場進(jìn)行沖浪運(yùn)動(dòng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項(xiàng)是1的兩個(gè)數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1﹣an+1bn+2bn+1bn=0.
(1)令cn= ,求數(shù)列{cn}的通項(xiàng)公式;
(2)若bn=3n﹣1 , 求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是二次函數(shù),且f(0)=0,f(x+1)=f(x)+x+1,
(1)求f(x)的表達(dá)式;
(2)若f(x)>a在x∈[﹣1,1]恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的奇函數(shù),且f(2)=0,當(dāng)x>0時(shí),有xf′(x)﹣f(x)<0恒成立,則不等式x2f(x)>0的解集是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)Z1 , Z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)分別為A(﹣2,1),B(a,3).
(1)若|Z1﹣Z2|= ,求a的值.
(2)復(fù)數(shù)z=Z1Z2對(duì)應(yīng)的點(diǎn)在二、四象限的角平分線上,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三次函數(shù)f(x)=x3+bx2+cx+d(a,b,c∈R)過點(diǎn)(3,0),且函數(shù)f(x)在點(diǎn)(0,f(0))處的切線恰好是直線y=0.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=9x+m﹣1,若函數(shù)y=f(x)﹣g(x)在區(qū)間[﹣2,1]上有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是自然對(duì)數(shù)的底數(shù), .
(1)求的單調(diào)區(qū)間,最大值;
(2)討論關(guān)于x的方程根的個(gè)數(shù).
所以當(dāng)時(shí),方程有兩個(gè)根;
當(dāng)時(shí),方程有一兩個(gè)根;
當(dāng)時(shí),方程有無兩個(gè)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017莊河高級(jí)中學(xué)四模】如圖,四棱錐中,底面是矩形,平面 平面,且是邊長為的等邊三角形, ,點(diǎn)是的中點(diǎn).
(1)求證: 平面 ;
(2)求四面體的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com