6.如圖,△ABC及其內(nèi)部的點組成的集合記為D,P(x,y)為D中任意一點,則z=x-4y的最大值為1.

分析 利用線性規(guī)劃的知識,通過平移即可求z的最大值和最小值.

解答 解:由z=x-4y,得y=$\frac{1}{4}x-\frac{z}{4}$,
平移直線y=$\frac{1}{4}x-\frac{z}{4}$,由圖象可知當(dāng)直線y=$\frac{1}{4}x-\frac{z}{4}$經(jīng)過點B(1,0)時,直線y=$\frac{1}{4}x-\frac{z}{4}$的截距最小,此時z最大.
此時z的最大值為z=1-4×0=1.
故答案為:1

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.注意目標(biāo)函數(shù)的幾何意義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,函數(shù)f(x)的定義域為[-1,2],f(x)的圖象為折線AB,BC.
(Ⅰ)求f(x)的解析式;
(Ⅱ)解不等式f(x)≥x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在數(shù)列{an}中,已知a1=$\frac{1}{2}$,an+1=1-$\frac{1}{{a}_{n}}$,n∈N*,則a30=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,為測得對岸塔AB的高,先在河岸上選一點C,使C在塔底B的正東方向上,測得點A的仰角為60°,再由點C沿北偏東方向是15°方向走30m到位置D,測得∠BDC=30°,則塔高是( 。
A.15mB.5$\sqrt{6}$mC.10$\sqrt{6}$mD.15$\sqrt{6}$m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an},a1+a5=10,a4=7,等比數(shù)列{bn}中,b3=4,b6=32.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)若cn是an、bn的等比中項,求數(shù)列{c${\;}_{n}^{2}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在數(shù)列{an}中,a1=2,且對于任意正整數(shù)n都有a1+a2+…+an=n2an,數(shù)列{bn}滿足b1=1,bk+1=ak+bk(k∈N*
(1)求a2,b2的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.直線x-y+2=0和橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)是偶函數(shù),當(dāng)0≤x≤1時,f(x)=x2,且f(x+1)=f(1-x),方程f(x)-lgx=0的根的個數(shù)是( 。
A.2B.7C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.若關(guān)于x的方程sin2x-(2+a)sinx+2a=0,x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]上有兩個實數(shù)根.
(1)設(shè)t=sinx,利用三角函數(shù)線,求t的取值范圍;
(2)求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案