如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點B到平面MAC的距離.
(1)證明過程詳見解析;(2)二面角的余弦值為;(3).
解析試題分析:本題考查空間兩條直線的位置關(guān)系、二面角、點到平面的距離等基礎(chǔ)知識,考查運用傳統(tǒng)幾何法,也可以運用空間向量法求解,突出考查空間想象能力和計算能力.第一問,根據(jù)線面平行的判定定理得到平面,所以垂直于面內(nèi)的任意線;第二問,法一:先找出二面角的平面角,取的中點,因為,所以,由三垂線定理得,所以得到二面角的平面角為,由已知得,在中用余弦定理求,在、、、中求邊長,最后在中即是二面角的余弦值.法二:用向量法,建立空間直角坐標(biāo)系,設(shè)出點坐標(biāo),因為直線與直線所成的角為,利用夾角公式,先得到點坐標(biāo),再求出平面的法向量,所以求與的夾角的余弦,并判斷夾角為銳角,所以余弦值為正值;第三問,先找線段的中點到平面的距離,利用線面垂直的判定定理,得到即是,用等面積法求,所以點到平面的距離是點到平面的距離的兩倍.
試題解析:方法1:(1)證明:∵,,∴平面,∴.(2分)
(2)取的中點,連.∵,∴,∴平面.
作,交的延長線于,連接.
由三垂線定理得,∴為二面角的平面角.
∵直線與直線所成的角為,
∴在中,.
在中,.
在中,.
在中,.
在中,∵
科目:高中數(shù)學(xué) 來源: 題型:解答題
在長方體中,為線段中點.
(1)求直線與直線所成的角的余弦值;
(2)若,求二面角的大;
(3)在棱上是否存在一點,使得平面?若存在,求的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐P-ABCD,底面ABCD是、邊長為的菱形,又,且PD=CD,點M、N分別是棱AD、PC的中點.
(1)證明:MB平面PAD;
(2)求點A到平面PMB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,平面,四邊形為正方形,且,分別是線段的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐與四棱錐的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,面面,底面是直角梯形,側(cè)面是等腰直角三角形.且∥,,,.
(1)判斷與的位置關(guān)系;
(2)求三棱錐的體積;
(3)若點是線段上一點,當(dāng)//平面時,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,邊長為2的正方形ABCD,E,F分別是AB,BC的中點,將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于.
(1)求證:⊥EF;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在斜三棱柱中,側(cè)面⊥底面,側(cè)棱與底面成的角,.底面是邊長為2的正三角形,其重心為點,是線段上一點,且.
(Ⅰ)求證://側(cè)面;
(Ⅱ)求平面與底面所成銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐A-BCD中,平行于BC的平面MNPQ分別交AB、AC、CD、BD于M、N、P、Q四點,且MN=PQ.
(1)求證:四邊形為平行四邊形;
(2)試在直線AC上找一點F,使得.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com