如圖,在三棱柱中,,,的中點(diǎn),且.

(1)求證:⊥平面;(2)求三棱錐的體積.

解:(1)∵AC=BC,D為AB的中點(diǎn),∴CD⊥AB,又∵CD⊥DA1,∴CD⊥平面ABB1A1,∴CD⊥BB1,

又BB1⊥AB,AB∩CD=D,∴BB1⊥平面ABC.……6分

(2)由(1)知CD⊥平面AA1B1B,故CD是三棱錐C-A1B1D的高,

在Rt△ACB中,AC=BC=2,∴AB=2,CD=,

又BB1=2,∴·CD

A1B1×B1B×CD=×2×2×.……12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1=
π
3
,E
為CC1上的一點(diǎn),
(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)在線段CC1是否存在一點(diǎn),使得二面角A-B1E-B大小為
π
4
.若存在請(qǐng)求出E點(diǎn)所在位置,若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國(guó)普通高等學(xué)校招生統(tǒng)一考試數(shù)學(xué)(江蘇卷解析版) 題型:填空題

如圖,在三棱柱中,,分別為,,的中點(diǎn),設(shè)三棱錐體積為,三棱柱的體積為,則       

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省?谑懈呷呖颊{(diào)研考試?yán)砜茢?shù)學(xué) 題型:選擇題

如圖,在三棱柱中,側(cè)棱垂直于底面,底面是邊長(zhǎng)為2的正三角形,側(cè)棱長(zhǎng)為3,則與平面所成的角是

 

 A.           B.           C.             D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省高二上學(xué)期八校聯(lián)考理科數(shù)學(xué) 題型:填空題

如圖,在三棱柱中,側(cè)面,且與底面成角,,則該棱柱體積的 最小值為           . 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省高一下學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)如圖,在三棱柱中,,,分別為的中點(diǎn).

(1)求證:∥平面;  (2)求證:平面

(3)直線與平面所成的角的正弦值.

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案