(本題滿分13分)
已知點和互不相同的點,
滿足,其中分別為等差數(shù)列和等比數(shù)列,O為坐標(biāo)原點,若為線段AB的中點。
(1)求的值;
(2)證明的公差為d =0,或的公比為q=1,點在同一直線上;
(3)若d 0,且q 1,點能否在同一直線上?證明你的結(jié)論

(1)
(2)證明略
(3)不在同一直線上,證明略
解:(1)為線段AB的中點,又,
不共線,由平面向量的基本定理知。
(2)由,
設(shè)的公差為d,的公比為q,則由于互不相同,
d=0,q=1所以不會同時成立。
若d=0,則都在直線上;
若q=1,則都在直線上;
若d 0,且q 1,在同一直線上
始終共線
,這與q 1矛盾。
所以d 0,且q 1,不可能在同一直線上
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)

已知AD是Rt斜邊BC的中線,用解析法證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理)已知是x,y軸正方向的單位向量,設(shè)=, =,且滿足
(1)、求點P(x,y)的軌跡E的方程.(5分)
(2)、若直線過點且法向量為,直線與軌跡交于兩點.點,無論直線繞點怎樣轉(zhuǎn)動, 是否為定值?如果是,求出定值;如果不是,請說明理由.并求實數(shù)的取值范圍;(9分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩點M(-2,0),N(2,0),點P為坐標(biāo)平面內(nèi)的動點,且滿足||||+·=0.
(1)求點P的軌跡C的方程;
(2)設(shè)過點N的直線l的斜率為k,且與曲線C相交于點ST,若ST兩點只在第二象限內(nèi)運動,線段ST的垂直平分線交x軸于Q點,求Q點橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本大題滿分12分)
中角A的對邊長等于2,向量向量.
(1)當(dāng)取最大值時,求角A的大小;
(2)在(1)條件下,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知向量互相垂直,其中
(1)求的值;
(2)若,求的值. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

=          。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平行四邊形中,下列結(jié)論中正確的是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

內(nèi)部且滿足,則的面積與凹四邊形的面積之比為         .

查看答案和解析>>

同步練習(xí)冊答案