設(shè)直線l:2x+y+2=0關(guān)于原點對稱的直線為l',若l′與橢圓x2+
y2
4
=1
的交點為A、B,點P為橢圓上的動點,則使△PAB的面積為
1
2
的點P的個數(shù)為(  )
分析:先求出直線l′的方程,與橢圓方程聯(lián)立求得交點A和B的坐標,利用兩點間的距離公式求出AB的長,再根據(jù)三角形的面積求出AB邊上的高,設(shè)出P的坐標,求出P到直線l′的距離即為AB邊上的高,得到關(guān)于a和b的方程,把P代入橢圓方程得到關(guān)于a與b的另一個關(guān)系式,兩者聯(lián)立利用根的判別式判斷出a與b的值有幾對即可得到交點有幾個.
解答:解:直線l關(guān)于原點對稱的直線l′為y=-2x+2,與橢圓聯(lián)立
y=-2x+2
x2+
y2
4
=1

x=0
y=2
x=1
y=0

則A(0,2),B(1,0),所以AB=
5

∵△PAB的面積為
1
2
,所以AB邊上的高為
5
5

設(shè)P的坐標為(a,b),則a2+
b2
4
=1

P到直線y=-2x+2的距離d=
|2a+b-2|
5
=
5
5

∴2a+b-2=1或2a+b-2=-1
∴2a+b=3或2a+b=1
聯(lián)立得
2a+b=3
a2+
b2
4
=1
①或
a2+
b2
4
=1
2a+b=1

解①得8a2-12a+5=0,因為△=144-160=-16<0,所以方程無解;
由②得:8a2-4a-3=0,△=16+96=112>0,
所以a有兩個不相等的根,則對應(yīng)的b也有兩個不等的根,所以滿足題意的P的坐標有兩個.
故選B.
點評:本題考查直線與橢圓的位置關(guān)系,考查點到直線的距離公式,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l:2x+y+2=0關(guān)于原點對稱的直線為l′,若l′與橢圓x2+
y2
4
=1的交點為A、B,點P為橢圓上的動點,則使△PAB的面積為
1
2
的點P的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l:2x+y+2=0關(guān)于原點對稱的直線為l',若l′與橢圓x2+
y2
4
=1
的交點為A、B,點P為橢圓上的動點,則使△PAB的面積為
1
2
的點P的個數(shù)為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-2:矩陣與變換
已知矩陣A=
m0
-1n
.在平面直角坐標系中,設(shè)直線l:2x+y-7=0在矩陣A對應(yīng)的變換作用下得到另一直線l′:9x+y-91=0,求實數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l:2x+y+2=0關(guān)于原點對稱的直線為L′,若L′與橢圓x2+
y2
4
=1
的交點為A、B,點P為橢圓上的動點,則使△PAB的面積為
2
-1
的點P的個數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊答案