已知圓內(nèi)接四邊形ABCD的邊長(zhǎng)分別為AB=2,BC=6,CD=DA=4,求四邊形ABCD的面積.
S=16sin120°=8
如圖: 連結(jié)BD,則有四邊形ABCD的面積:
S=S△ABD+S△CDB=·AB·ADsinA+·BC·CD·sinC
∵A+C=180°,∴sinA=sinC
故S=(AB·AD+BC·CD)sinA=(2×4+6×4)sinA=16sinA
由余弦定理,在△ABD中,BD2=AB2+AD2-2AB·AD·cosA=20-16cosA
在△CDB中,BD2=CB2+CD2-2CB·CD·cosC=52-48cosC
∴20-16cosA=52-48cosC,∵cosC=-cosA,
∴64cosA=-32,cosA=-,
又0°<A<180°,∴A=120°故S=16sin120°=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:江蘇省私立無(wú)錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長(zhǎng)分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com