將一個正整數(shù)n表示為a1+a2+…+ap(p∈N*)的形式,其中ai∈N*,i=1,2,…,p,且a1≤a2≤…≤ap,記所有這樣的表示法的種數(shù)為f(n)(如4=4,4=1+3,4=2+2,4=1+1+2,4=1+1+1+1,故f(4)=5).
(Ⅰ)寫出f(3),f(5)的值,并說明理由;
(Ⅱ)證明:f(n+1)-f(n)≥1(n=1,2,…);
(Ⅲ)對任意正整數(shù)n,比較f(n+1)與的大小,并給出證明.
【答案】分析:(Ⅰ)利用新定義,即可寫出f(3),f(5)的值;
(Ⅱ)因為n+1≥2,把n+1的一個表示法中a1=1的a1去掉,就可得到一個n的表示法;反之,在n的一個表示法前面添加一個“1+”,就得到一個n+1的表示法,即n+1的表示法中a1=1的表示法種數(shù)等于n的表示法種數(shù),故可得結(jié)論;
(Ⅲ)證明f(n+1)-f(n)≤f(n+2)-f(n+1)即可.
解答:(Ⅰ)解:因為3=3,3=1+2,3=1+1+1,所以f(3)=3.
因為5=5,5=2+3,5=1+4,5=1+1+3,5=1+2+2,5=1+1+1+2,5=1+1+1+1+1,
所以f(5)=7.
(Ⅱ)證明:因為n+1≥2,把n+1的一個表示法中a1=1的a1去掉,就可得到一個n的表示法;反之,在n的一個表示法前面添加一個“1+”,就得到一個n+1的表示法,即n+1的表示法中a1=1的表示法種數(shù)等于n的表示法種數(shù),
所以 f(n+1)-f(n)表示的是n+1的表示法中a1≠1的表示法數(shù).
即 f(n+1)-f(n)≥1.
(Ⅲ)解:結(jié)論是f(n+1)
證明如下:由結(jié)論知,只需證 f(n+1)-f(n)≤f(n+2)-f(n+1).
由(Ⅱ)知:f(n+1)-f(n)表示的是n+1的表示法中a1≠1的表示法數(shù),f(n+2)-f(n+1)是n+2的表示法中a1≠1的表示法數(shù).
考慮到n+1≥2,把一個a1≠1的n+1的表示法中的ap加上1,就可變?yōu)橐粋€a1≠1的n+2的表示法,這樣就構(gòu)造了從a1≠1的n+1的表示法到a1≠1的n+2的表示法的一個對應(yīng),所以有f(n+1)-f(n)≤f(n+2)-f(n+1).
點(diǎn)評:本題考查新定義,考查學(xué)生對新情境問題的理解,考查學(xué)生分析解決問題的能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•海淀區(qū)二模)將一個正整數(shù)n表示為a1+a2+…+ap(p∈N*)的形式,其中ai∈N*,i=1,2,…,p,且a1≤a2≤…≤ap,記所有這樣的表示法的種數(shù)為f(n)(如4=4,4=1+3,4=2+2,4=1+1+2,4=1+1+1+1,故f(4)=5).
(Ⅰ)寫出f(3),f(5)的值,并說明理由;
(Ⅱ)對任意正整數(shù)n,比較f(n+1)與
12
[f(n)+f(n+2)]
的大小,并給出證明;
(Ⅲ)當(dāng)正整數(shù)n≥6時,求證:f(n)≥4n-13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•海淀區(qū)二模)將一個正整數(shù)n表示為a1+a2+…+ap(p∈N*)的形式,其中ai∈N*,i=1,2,…,p,且a1≤a2≤…≤ap,記所有這樣的表示法的種數(shù)為f(n)(如4=4,4=1+3,4=2+2,4=1+1+2,4=1+1+1+1,故f(4)=5).
(Ⅰ)寫出f(3),f(5)的值,并說明理由;
(Ⅱ)證明:f(n+1)-f(n)≥1(n=1,2,…);
(Ⅲ)對任意正整數(shù)n,比較f(n+1)與
12
[f(n)+f(n+2)]
的大小,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:海淀區(qū)二模 題型:解答題

將一個正整數(shù)n表示為a1+a2+…+ap(p∈N*)的形式,其中ai∈N*,i=1,2,…,p,且a1≤a2≤…≤ap,記所有這樣的表示法的種數(shù)為f(n)(如4=4,4=1+3,4=2+2,4=1+1+2,4=1+1+1+1,故f(4)=5).
(Ⅰ)寫出f(3),f(5)的值,并說明理由;
(Ⅱ)對任意正整數(shù)n,比較f(n+1)與
1
2
[f(n)+f(n+2)]
的大小,并給出證明;
(Ⅲ)當(dāng)正整數(shù)n≥6時,求證:f(n)≥4n-13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年北京市海淀區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

將一個正整數(shù)n表示為a1+a2+…+ap(p∈N*)的形式,其中ai∈N*,i=1,2,…,p,且a1≤a2≤…≤ap,記所有這樣的表示法的種數(shù)為f(n)(如4=4,4=1+3,4=2+2,4=1+1+2,4=1+1+1+1,故f(4)=5).
(Ⅰ)寫出f(3),f(5)的值,并說明理由;
(Ⅱ)對任意正整數(shù)n,比較f(n+1)與的大小,并給出證明;
(Ⅲ)當(dāng)正整數(shù)n≥6時,求證:f(n)≥4n-13.

查看答案和解析>>

同步練習(xí)冊答案