雙曲線-y2=1(n>1)的左、右兩個焦點為F1,F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△PF1F2的面積為(  )

(A) (B)1 (C)2 (D)4

 

B

【解析】不妨設點P在雙曲線的右支上,

|PF1|-|PF2|=2,|PF1|+|PF2|=2,

|PF1|=+,|PF2|=-,

c=,

|PF1|2+|PF2|2=|F1F2|2,

∴∠F1PF2=90°,

=|PF1||PF2|=1.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)八十一選修4-5第三節(jié)練習卷(解析版) 題型:解答題

已知實數(shù)a,b,c,d滿足a+b+c+d=3,a2+2b2+3c2+6d2=5,試求a的最值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十六第八章第七節(jié)練習卷(解析版) 題型:選擇題

已知拋物線y2=2px(p>0)上的一點M(1,m)(m>0)到其焦點的距離為5,雙曲線-y2=1的左頂點為A,若雙曲線的一條漸近線與直線AM平行,則實數(shù)a的值為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十五第八章第六節(jié)練習卷(解析版) 題型:解答題

橢圓C1:+=1(a>b>0)的左、右頂點分別為A,B,P是雙曲線C2:-=1在第一象限內的圖象上一點,直線AP,BP與橢圓C1分別交于C,D,SACD=SPCD.

(1)P點的坐標.

(2)能否使直線CD過橢圓C1的右焦點,若能,求出此時雙曲線C2的離心率;若不能,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十五第八章第六節(jié)練習卷(解析版) 題型:選擇題

已知雙曲線-=1(a>0,b>0)的一條漸近線方程為y=x,則雙曲線的離心率為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十二第八章第三節(jié)練習卷(解析版) 題型:填空題

設二次函數(shù)y=x2-x+1x軸正半軸的交點分別為A,B,y軸正半軸的交點是C,則過A,B,C三點的圓的標準方程是    .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十二第八章第三節(jié)練習卷(解析版) 題型:選擇題

在同一坐標系下,直線ax+by=ab和圓(x-a)2+(y-b)2=r2(ab0,r>0)的圖象可能是(  )

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十九第八章第十節(jié)練習卷(解析版) 題型:選擇題

M(x0,y0)為拋物線C:y2=8x上一點,F為拋物線C的焦點,若以F為圓心,|FM|為半徑的圓和拋物線C的準線相交,x0的取值范圍是(  )

(A)(2,+) (B)(4,+)

(C)(0,2) (D)(0,4)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十一第八章第二節(jié)練習卷(解析版) 題型:選擇題

已知點A(-3,-4),B(6,3)到直線l:ax+y+1=0的距離相等,則實數(shù)a的值等于(  )

(A) (B)-

(C)-- (D)

 

查看答案和解析>>

同步練習冊答案