下列是容量為100的樣本的頻率分布直方圖,則樣本數(shù)據(jù)落在范圍〔6,10〕內(nèi)的頻數(shù)值為
 
考點:頻率分布直方圖
專題:圖表型,概率與統(tǒng)計
分析:根據(jù)頻率=小矩形的面積求出數(shù)據(jù)落在范圍〔6,10〕內(nèi)的頻率,再利用頻數(shù)=頻率×樣本容量求得樣本數(shù)據(jù)落在范圍〔6,10〕內(nèi)的頻數(shù).
解答: 解:由頻率分布直方圖得數(shù)據(jù)落在范圍〔6,10〕內(nèi)的頻率為0.08×4=0.32,
∴樣本數(shù)據(jù)落在范圍〔6,10〕內(nèi)的頻數(shù)為100×0.32=32.
故答案為:32.
點評:本題考查了頻率分布直方圖,在頻率分布直方圖中頻率=小矩形的面積=
頻數(shù)
樣本容量
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的真命題是( 。
A、?x∈R,使得sinxcosx=
3
5
B、?x∈(-∞,0),2x>1
C、?x∈R,x2≥x-1
D、?x∈(0,π),sinx>cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+4x=0},函數(shù)B={x|x2+2(a+1)x+a2-1=0}.
(1)求使A∩B=B的實數(shù)a的取值范圍;
(2)使A∪B=B的實數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列四個命題;
①函數(shù)g(x)=1+
2
2x-1
是奇函數(shù);
②函數(shù)f(x)=log2x滿足:對于任意x1,x2∈R,且x1≠x2,都有f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)]
;
③若函數(shù)f(x)滿足f(x-1)=-f(x+1),f(1)=2,則f(7)=-2;
④設(shè)x1,x2是關(guān)于x的方程|logax|=k(a>0,a≠1,k>0)的兩根,則x1x2=1;
其中正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個四棱錐的底面為菱形,其三視圖如圖所示,則這個四棱錐的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}與{bn}滿足bn+1an+bnan+1=(-1)n+1,bn=
3+(-1)n-1
2
,n∈N+,且a1=2,設(shè)數(shù)列{an}的前n項和為Sn,則S63=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x丨丨x丨2-3丨x丨+2=0},B={x丨(a-2)x=2},則滿足B?A的a值有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,已知
OA
=(-1,t),
OB
=(2,2),若∠ABO=90°,則t=( 。
A、2B、4C、5D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,PA=PD=AD且側(cè)面PAD⊥底面ABCD,若E、F分別為PC、BD的中點.
(Ⅰ)求證:EF∥平面PAD; 
(Ⅱ)在線段PB上是否存在點M,使得二面角A-MC-B為直二面角,若存在,求出BM的長,若不存在,請說明理由?

查看答案和解析>>

同步練習(xí)冊答案