紅隊(duì)隊(duì)員甲、乙、丙與藍(lán)隊(duì)隊(duì)員A、B、C進(jìn)行圍棋比賽,甲對(duì)A,乙對(duì)B,丙對(duì)C各一盤(pán),已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設(shè)各盤(pán)比賽結(jié)果相互獨(dú)立.
(Ⅰ)求紅隊(duì)至少兩名隊(duì)員獲勝的概率;
(Ⅱ)用ξ表示紅隊(duì)隊(duì)員獲勝的總盤(pán)數(shù),求ξ的分布列和數(shù)學(xué)期望Eξ.
【答案】分析:(I)由題意知紅隊(duì)至少有兩名隊(duì)員獲勝包括四種情況,一是只有甲輸,二是只有乙輸,三是只有丙輸,四是三個(gè)人都贏,這四種情況是互斥的,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率和互斥事件的概率得到結(jié)果.
(II)由題意知ξ的可能取值是0,1,2,3,結(jié)合變量對(duì)應(yīng)的事件寫(xiě)出變量對(duì)應(yīng)的概率,變量等于2使得概率可以用1減去其他的概率得到,寫(xiě)出分布列,算出期望.
解答:解:(I)設(shè)甲勝A的事件為D,乙勝B的事件為E,丙勝C的事件為F,
∵甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5
可以得到D,E,F(xiàn)的對(duì)立事件的概率分別為0.4,0,5,0.5
紅隊(duì)至少兩名隊(duì)員獲勝包括四種情況:DE,DF,,DEF,
這四種情況是互斥的,
∴P=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55
(II)由題意知ξ的可能取值是0,1,2,3
P(ξ=0)=0.4×0.5×0.5=0.1.,
P(ξ=1)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35
P(ξ=3)=0.6×0.5×0.5=0.15
P(ξ=2)=1-0.1-0.35-0.15=0.4
∴ξ的分布列是

∴Eξ=0×0.1+1×0.35+2×0.4+3×0.15=1.6
點(diǎn)評(píng):本題考查互斥事件的概率,考查相互獨(dú)立事件的概率,考查離散型隨機(jī)變量的分布列和期望,解題時(shí)注意對(duì)立事件概率的使用,一般遇到從正面解決比較麻煩的,就選擇利用對(duì)立事件來(lái)解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

紅隊(duì)隊(duì)員甲、乙、丙與藍(lán)隊(duì)隊(duì)員A、B、C進(jìn)行圍棋比賽,甲對(duì)A,乙對(duì)B,丙對(duì)C各一盤(pán),已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設(shè)各盤(pán)比賽結(jié)果相互獨(dú)立.
(Ⅰ)求紅隊(duì)至少兩名隊(duì)員獲勝的概率;
(Ⅱ)用ξ表示紅隊(duì)隊(duì)員獲勝的總盤(pán)數(shù),求ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•甘谷縣模擬)(文)紅隊(duì)隊(duì)員甲、乙、丙與藍(lán)隊(duì)隊(duì)員A、B、C進(jìn)行圍棋比賽,甲對(duì)A,乙對(duì)B,丙對(duì)C各一盤(pán),已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設(shè)各盤(pán)比賽結(jié)果相互獨(dú)立.求紅隊(duì)至少兩名隊(duì)員獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

紅隊(duì)隊(duì)員甲、乙、丙與藍(lán)隊(duì)隊(duì)員A、B、C進(jìn)行圍棋比賽,甲對(duì)A,乙對(duì)B,丙對(duì)C各一盤(pán),已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設(shè)各盤(pán)比賽結(jié)果相互獨(dú)立。

(Ⅰ)求紅隊(duì)至少兩名隊(duì)員獲勝的概率;

(Ⅱ)用表示紅隊(duì)隊(duì)員獲勝的總盤(pán)數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年甘肅省高三期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分12分)紅隊(duì)隊(duì)員甲、乙、丙與藍(lán)隊(duì)隊(duì)員A、B、C進(jìn)行圍棋比賽,甲對(duì)A,乙對(duì)B,丙對(duì)C各一盤(pán),已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設(shè)各盤(pán)比賽結(jié)果相互獨(dú)立.

(I)求紅隊(duì)至少兩名隊(duì)員獲勝的概率;

(II)用表示紅隊(duì)隊(duì)員獲勝的總盤(pán)數(shù),求的分布列和數(shù)學(xué)期望

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高考試題數(shù)學(xué)理(山東卷)解析版 題型:解答題

 

    紅隊(duì)隊(duì)員甲、乙、丙與藍(lán)隊(duì)隊(duì)員A、B、C進(jìn)行圍棋比賽,甲對(duì)A、乙對(duì)B、丙對(duì)C各一盤(pán)。已知甲勝A、乙勝B、丙勝C的概率分別為0.6,0.5,0.5.假設(shè)各盤(pán)比賽結(jié)果相互獨(dú)立。

(Ⅰ)求紅隊(duì)至少兩名隊(duì)員獲勝的概率;

(Ⅱ)用表示紅隊(duì)隊(duì)員獲勝的總盤(pán)數(shù),求的分布列和數(shù)學(xué)期望。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案