【題目】已知函數(shù).
(1)若函數(shù)的定義域和值域均為,求實(shí)數(shù)的值;
(2)若在區(qū)間上是減函數(shù),且對(duì)任意的,總有,求實(shí)數(shù)的取值范圍.
【答案】(1)=2。(2)2 3。
【解析】試題分析:(1)確定函數(shù)的對(duì)稱軸,從而可得函數(shù)的單調(diào)性,利用 的定義域和值域均是 ,建立方程,即可求實(shí)數(shù)的值.
(2)可以根據(jù)函數(shù) 開口向上,對(duì)稱軸為 ,可以推出的范圍,利用函數(shù)的圖象求出上的最值問題,對(duì)任意的 總有 ,從而求出實(shí)數(shù)的取值范圍.
試題解析:(1)因?yàn)?/span>在 上為減函數(shù),所以在[1, ]上單調(diào)遞減,即= = , = =1,所以=2。
(2)因?yàn)?/span>在上是減函數(shù),所以≥2.所以在[1, ]上單調(diào)遞減,在[,+1]上單調(diào)遞增,所以= =5- =max{ , },又- =6-2-(6-)= (-2)≥0,所以= =6-2.因?yàn)閷?duì)任意的x1, x2 [1, +1], 總有 - 4,所以- 4,即-1 3,又≥2,故2 3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足Sn=2n﹣an(n∈N*). (Ⅰ)計(jì)算a1 , a2 , a3 , a4 , 并由此猜想通項(xiàng)公式an;
(Ⅱ)用數(shù)學(xué)歸納法證明(Ⅰ)中的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)如果,在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(為自然對(duì)數(shù)的底數(shù), ).
(1)設(shè)為的導(dǎo)函數(shù),證明:當(dāng)時(shí), 的最小值小于0;
(2)若恒成立,求符合條件的最小整數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(1+x)﹣ . (Ⅰ)若a=2,求f(x)在x=1處的切線方程;
(Ⅱ)若f(x)≥0對(duì)x∈(﹣1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了促進(jìn)學(xué)生的全面發(fā)展,鄭州市某中學(xué)重視學(xué)生社團(tuán)文化建設(shè),現(xiàn)用分層抽樣的方法從“話劇社”,“創(chuàng)客社”,“演講社”三個(gè)金牌社團(tuán)中抽取6人組成社團(tuán)管理小組,有關(guān)數(shù)據(jù)見表(單位:人):
社團(tuán)名稱 | 成員人數(shù) | 抽取人數(shù) |
話劇社 | 50 | a |
創(chuàng)客社 | 150 | b |
演講社 | 100 | c |
(1)求a,b,c的值;
(2)若從“話劇社”,“創(chuàng)客社”,“演講社”已抽取的6人中任意抽取2人擔(dān)任管理小組組長,求這2人來自不同社團(tuán)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的有 . (填上所有正確命題的序號(hào)) ①一質(zhì)點(diǎn)在直線上以速度v=3t2﹣2t﹣1(m/s)運(yùn)動(dòng),從時(shí)刻t=0(s)到t=3(s)時(shí)質(zhì)點(diǎn)運(yùn)動(dòng)的路程為15(m);
②若x∈(0,π),則sinx<x;
③若f′(x0)=0,則函數(shù)y=f(x)在x=x0取得極值;
④已知函數(shù) ,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, , 平面, .
(1)設(shè)點(diǎn)為的中點(diǎn),求證: 平面;
(2)線段上是否存在一點(diǎn),使得直線與平面所成的角的正弦值為?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com