對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:f′′(x)是函數(shù)y=f(x)的導(dǎo)數(shù)f′(x)的導(dǎo)數(shù),若方程f′′(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有′拐點(diǎn)′;任何一個(gè)三次函數(shù)都有對稱中心,且‘拐點(diǎn)’就是對稱中心”.請你將這一發(fā)現(xiàn)作為條件,則函數(shù)f(x)=x3-3x2+3x的對稱中心為__________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:解答題
某造紙廠擬建一座底面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價(jià)為400元/米,中間兩道隔墻建造單價(jià)為248元/米,池底建造單價(jià)為80元/平方米,水池所有墻的厚度忽略不計(jì).
(1)試設(shè)計(jì)污水處理池的長和寬,使總造價(jià)最低,并求出最低總造價(jià);
(2)若由于地形限制,該池的長和寬都不能超過16米,試設(shè)計(jì)污水處理池的長和寬,使總造價(jià)最低,并求出最低總造價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第四章平面向量、數(shù)系擴(kuò)充與復(fù)數(shù)引入(解析版) 題型:選擇題
(2014·孝感模擬)已知下列結(jié)論:
①若a=b,b=c,則a=c;
②若a∥b,b∥c,則a∥c;
③|a·b|=|a|·|b|;
④若a·b=a·c,則b=c的逆命題.
其中正確的是( )
A.①② B.①④ C.①②③ D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第十章 算法初步、統(tǒng)計(jì)、統(tǒng)計(jì)案例(解析版) 題型:選擇題
(2014·營口模擬)一個(gè)路口的信號燈,綠燈亮40秒后,黃燈亮若干秒,然后紅燈亮30秒,如果一輛車到達(dá)路口時(shí),遇到紅燈的概率為,那么黃燈亮的時(shí)間為
( )
A.3秒 B.4秒 C.5秒 D.6秒
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第六章 不等式、推理與證明(解析版) 題型:解答題
已知函數(shù)f(x)=lnx+a,其中a為大于零的常數(shù).
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
(2)求證:對于任意的n∈N*,且n>1時(shí),都有l(wèi)nn>++…+恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第六章 不等式、推理與證明(解析版) 題型:填空題
(2014·十堰模擬)若不等式-a<x-1<a成立的充分條件是0<x<4,則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第六章 不等式、推理與證明(解析版) 題型:選擇題
(2013·宿州模擬)如果實(shí)數(shù)x,y滿足條件那么2x-y的最大值為
( )
A.2 B.1 C.-2 D.-3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第八章 平面解析幾何(解析版) 題型:選擇題
設(shè)雙曲線-=1(a>0,b>0)的右焦點(diǎn)為F,過點(diǎn)F作與x軸垂直的直線l交兩漸近線于A,B兩點(diǎn),且與雙曲線在第一象限的交點(diǎn)為P,設(shè)O為坐標(biāo)原點(diǎn),若=λ+μ(λ,μ∈R),λμ=,則該雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用(解析版) 題型:填空題
(2014·南京模擬)已知曲線f(x)=lnx在點(diǎn)(x0,f(x0))處的切線經(jīng)過點(diǎn)(0,1),則x0的值為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com