5.過A(0,1),B(3,5)兩點的直線的斜率是(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$-\frac{4}{3}$D.$-\frac{3}{4}$

分析 直接應(yīng)用斜率公式求解.

解答 解:由斜率公式可得:
k=$\frac{5-1}{3-0}$=$\frac{4}{3}$
故選A

點評 本題主要考查直線的斜率公式,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC的頂點A(5,1),AB邊上的中線CM所在的直線方程為2x-y-5=0,AC邊上的高BH所在的直線方程為x-2y-5=0.求
(Ⅰ)AC所在的直線方程;
(Ⅱ)點B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=$\left\{\begin{array}{l}{(3a+2)x-1,x≤1}\\{\frac{a}{x},x>1}\end{array}\right.$是R上的單調(diào)函數(shù),則實數(shù)a的取值范圍為$(-\frac{2}{3},-\frac{1}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知角α的終邊經(jīng)過點P(2,m)(m>0),且cosα=$\frac{2\sqrt{5}}{5}$,則m=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖所示,在平行四邊形ABCD中,AB=4,AD=3,E是邊CD的中點,$\overrightarrow{DF}$=$\frac{1}{3}$$\overrightarrow{DA}$,若$\overrightarrow{AE}$•$\overrightarrow{BF}$=-4,則sin∠BAD=$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若圓(x-1)2+y2=25的弦AB被點P(2,1)平分,則直線AB的方程為( 。
A.2x+y-3=0B.x+y-3=0C.x-y-1=0D.2x-y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知動直線l的方程:cosα•(x-2)+sinα•(y+1)=1(α∈R),給出如下結(jié)論:
①動直線l恒過某一定點;
②存在不同的實數(shù)α1,α2,使相應(yīng)的直線l1,l2平行;
③坐標(biāo)平面上至少存在兩個點都不在動直線l上;
④動直線l可表示坐標(biāo)平面上除x=2,y=-1之外的所有直線;
⑤動直線l可表示坐標(biāo)平面上的所有直線;
其中正確結(jié)論的序號是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果函數(shù)y=sin(x+ϕ)的圖象經(jīng)過點$(\frac{π}{3},0)$,那么ϕ可以是(  )
A.0B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)f(x)=ax2+bx+c(a>b>c)的圖象經(jīng)過點A(m1,f(m1))和點B(m2,f(m2)),f(1)=0,若a2+(f(m1)+f(m2)•a+f(m1)•f(m2)=0,則(  )
A.b≥0B.b<0C.3a+c≤0D.3a-c<0

查看答案和解析>>

同步練習(xí)冊答案