5.設(shè)A1,A2,A3,…,An是集合{1,2,3,…,n}的n個(gè)非空子集(n≥2),定義aij=$\left\{\begin{array}{l}{0{,A}_{i}∩{A}_{j}=∅}\\{1,{A}_{i}∩{A}_{j}≠∅}\end{array}\right.$,其中i,j=1,2,…,n,這樣得到的n2個(gè)數(shù)之和記為S(A1,A2,A3,…,An),簡(jiǎn)記為S,下列三種說(shuō)法:①S與n的奇偶性相同;②S是n的倍數(shù);③S的最小值為n,最大值為n2.其中正確的判斷是( 。
A.①②B.①③C.②③D.

分析 由集合的子集的概念和規(guī)定第i行與第j列的數(shù)為aij=$\left\{\begin{array}{l}{0{,A}_{i}∩{A}_{j}=∅}\\{1,{A}_{i}∩{A}_{j}≠∅}\end{array}\right.$,其中i,j=1,2,…,n,對(duì)選項(xiàng)一一判斷即可.

解答 解:把a(bǔ)ij按其腳注排成一個(gè)數(shù)陣的話(huà),如下,對(duì)角線(xiàn)上全是1,對(duì)角線(xiàn)外,1成對(duì)出現(xiàn),如下:

(1)a11=a22=…=ann=1;
(2)當(dāng)i≠j時(shí),若aij=1,則aij=1;
若aij=0,則aij=0;
即對(duì)角線(xiàn)上全是1,對(duì)角線(xiàn)外,1成對(duì)出現(xiàn),
所以,S=n+2k,k是某一個(gè)非負(fù)整數(shù),
即:S與n的奇偶性一致,且S最小值是n,
又因?yàn)椋?dāng)A1=A2=…=An時(shí),S=n2
故①③是正確的.
故選:B.

點(diǎn)評(píng) 本題考查集合的子集的概念,考查簡(jiǎn)單的合情推理,以及對(duì)規(guī)定的理解和運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.四棱柱ABCD-A1B1C1D1的三視圖如圖所示,則異面直線(xiàn)D1C與AC1所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓的焦點(diǎn)分別為F1(-2$\sqrt{2}$,0)、F2(2$\sqrt{2}$,0),長(zhǎng)軸長(zhǎng)為6,設(shè)直線(xiàn)x-y+2=0交橢圓于A(yíng)、B兩點(diǎn)
(1)求橢圓的方程;
(2)求線(xiàn)段AB的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=ax2+2(a-1)x-2lnx.
(1)當(dāng)a=1時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e]上的最小值為1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若對(duì)數(shù)函數(shù)y=logax的圖象過(guò)點(diǎn)(9,2),則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示的幾何體中,四邊形ABCD為等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF.
(1)求證:BD⊥平面AED;
(2)若△EAD中,AE=ED,∠EAD=45°,求二面角F-BD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,則點(diǎn)C1到平面A1BD的距離是$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知A=$\frac{3}{{\frac{1}{p}+\frac{1}{q}+\frac{1}{s}}}$,B=$\frac{p+q+s}{3}$( p,q,s∈(0,+∞))
(Ⅰ)分別就$\left\{{\begin{array}{l}{p=1}\\{q=1}\\{s=1}\end{array}}$和$\left\{{\begin{array}{l}{p=1}\\{q=2}\\{s=1}\end{array}}$判斷A與B的大小關(guān)系,并由此猜想:對(duì)于任意的正數(shù)p,q,s,A與B的大小關(guān)系及等號(hào)成立的條件;
(Ⅱ)請(qǐng)證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.x,y∈R,若|x|+|y|+|x-1|+|y-1|≤2,則x+y的取值范圍為( 。
A.[-2,0]B.[0,2]C.[-2,2]D.(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案