精英家教網 > 高中數學 > 題目詳情

(本小題滿分15分)已知是定義在上的奇函數,當時,

   

   (1)求的解析式;

   (2)是否存在實數,使得當的最小值是4?如果存在,求出的值;如果不存在,請說明理由。

 

【答案】

(1)

(2)存在實數,使得當最小值4。

【解析】(1)設

上的奇函數,

故函數的解析式為:

(2)假設存在實數,使得當

有最小值是3。

①當時,

由于故函數上的增函數。

解得(舍去)

②當

 

 

 

x

+

解得ks*5u

綜上所知,存在實數,使得當最小值4。

 

練習冊系列答案
相關習題

科目:高中數學 來源:2012-2013學年福建省高三上學期期中理科數學試卷(解析版) 題型:解答題

(本小題滿分15分)

已知函數

(Ⅰ)求函數的單調區(qū)間;

(Ⅱ)若,試分別解答以下兩小題.

(。┤舨坏仁對任意的恒成立,求實數的取值范圍;

(ⅱ)若是兩個不相等的正數,且,求證:

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年浙江省高三下學期3月聯考理科數學 題型:解答題

(本小題滿分15分).

已知分別為橢圓

上、下焦點,其中也是拋物線的焦點,

在第二象限的交點,且。

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點P(1,3)和圓,過點P的動直線與圓相交于不同的兩點A,B,在線段AB取一點Q,滿足:,)。求證:點Q總在某定直線上。

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年浙江省高三上學期第三次月考數學文卷 題型:解答題

(本小題滿分15分)

如圖已知,橢圓的左、右焦點分別為、,過的直線與橢圓相交于A、B兩點。

(Ⅰ)若,且,求橢圓的離心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中數學 來源:2014屆浙江省寧波市高一上學期期末考試數學 題型:解答題

(本小題滿分15分)若函數在定義域內存在區(qū)間,滿足上的值域為,則稱這樣的函數為“優(yōu)美函數”.

(Ⅰ)判斷函數是否為“優(yōu)美函數”?若是,求出;若不是,說明理由;

(Ⅱ)若函數為“優(yōu)美函數”,求實數的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2010-2011年江蘇省高二下學期期中考試理數 題型:解答題

(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:

(1)第1次抽到理科題的概率;

(2)第1次和第2次都抽到理科題的概率;

(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率

 

 

查看答案和解析>>

同步練習冊答案