【題目】若f(x)是定義在R上的函數(shù),且滿足:①f(x)是偶函數(shù);②f(x+2)是偶函數(shù);③當0<x≤2時,f(x)=log2017x,當x=0時,f(0)=0,則方程f(x)=﹣2017在區(qū)間(1,10)內(nèi)的多有實數(shù)根之和為(
A.0
B.10
C.12
D.24

【答案】D
【解析】解:∵f(x+2)是偶函數(shù),

∴f(x+2)=f(﹣x+2),

∴f(x)的圖象關(guān)于直線x=2對稱,

又f(x)是偶函數(shù),

∴f(x+2)=f(﹣x+2)=f(x﹣2),

∴f(x)的周期為4,

作出f(x)在(0,10)上的函數(shù)圖象如圖所示:

由圖象可知f(x)=﹣2017在(1,10)上有4個零點,

其中兩個關(guān)于零點關(guān)于直線x=4對稱,另兩個零點關(guān)于直線x=8對稱,

∴f(x)=﹣2017在(1,10)上的所有零點之和為4×2+8×2=24.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b∈R,函數(shù) ,g(x)=ex(e為自然對數(shù)的底數(shù)),且函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若g(x)>f(x)在區(qū)間(﹣∞,0)內(nèi)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(0,﹣2),橢圓E: + =1(a>b>0)的離心率為 ,F(xiàn)是橢圓的焦點,直線AF的斜率為 ,O為坐標原點.
(Ⅰ)求E的方程;
(Ⅱ)設(shè)過點A的直線l與E相交于P,Q兩點,當△OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 點(n,Sn+3)(n∈N*)在函數(shù)y=3×2x的圖象上,等比數(shù)列{bn}滿足bn+bn+1=an(n∈N*).其前n項和為Tn , 則下列結(jié)論正確的是(
A.Sn=2Tn
B.Tn=2bn+1
C.Tn>an
D.Tn<bn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面ACC1A1⊥底面ABC,∠A1AC=60°,AC=2AA1=4,點D,E分別是AA1 , BC的中點.
(1)證明:DE∥平面A1B1C;
(2)若AB=2,∠BAC=60°,求直線DE與平面ABB1A1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位打字員在兩臺電腦上各自輸入A,B兩種類型的文件的部分文字才能使這兩類文件成為成品.已知A文件需要甲輸入0.5小時,乙輸入0.2小時;B文件需要甲輸入0.3小時,乙輸入0.6小時.在一個工作日中,甲至多只能輸入6小時,乙至多只能輸入8小時,A文件每份的利潤為60元,B文件每份的利潤為80元,則甲、乙兩位打字員在一個工作日內(nèi)獲得的最大利潤是元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2|+|x+4|,g(x)=x2+4x+3.
(1)求不等式f(x)≥g(x)的解集;
(2)若f(x)≥|1﹣5a|恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (x>0),m∈R.
(1)若函數(shù)f(x)有零點,求實數(shù)m的取值范圍;
(2)若函數(shù)f(x)的圖象在點(1,f(x))處的切線的斜率為 ,且函數(shù)f(x)的最大值為M,求證:1<M<

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數(shù)據(jù)不清楚,那么8位員工月工資的中位數(shù)不可能是(
A.5800
B.6000
C.6200
D.6400

查看答案和解析>>

同步練習(xí)冊答案