已知函數(shù)數(shù)學公式,數(shù)學公式,動直線x=t分別與函數(shù)y=f(x)、y=g(x)的圖象分別交于點A(t,f(t))、B(t,g(t)),在點A處作函數(shù)y=f(x)的圖象的切線,記為直線l1,在點B處作函數(shù)y=g(x)的圖象的切線,記為直線l2
(Ⅰ)證明:不論t取何實數(shù)值,直線l1與l2恒相交;
(Ⅱ)若直線l1與l2相交于點P,試求點P到直線AB的距離;
(Ⅲ)當t<0時,試討論△PAB何時為銳角三角形?直角三角形?鈍角三角形?

解:(Ⅰ),
∴直線l1的斜率,直線l2的斜率,
令k1=k2,得,此方程沒有實數(shù)解,∴不論t取何實數(shù)值,直線l1與l2恒相交.
(Ⅱ)直線l1的方程為:y=f(t)+g(t)(x-t),…①
直線l2的方程為:y=g(t)+f(t)(x-t),…②
由①、②得:(g(t)-f(t))(x-t-1)=0.
,∴x-t=1,又∵直線AB方程為x=t,直線AB垂直x軸,∴點P到直線AB的距離為1.
(Ⅲ)由(Ⅱ)可求得P(t+1,2et),
①∵,,
,
∵t<0,e2t<1,∴,
又∵,
∴cos∠B>0,∠B恒為銳角.
②∵,,

∴不論t取何值,∠A恒為銳角.
③∵,∴
,得(e2t2+e2t-1>0,
,
又∵,∴cos∠P>0,∠P為銳角.
,得,
此時,cos∠P=0,∠P為直角;
,得(e2t2+e2t-1<0,,
,,此時,cos∠P<0,∠P為鈍角.
綜合①②③得:當時,△PAB為鈍角三角形;
時,△PAB為直角三角形;
時,△PAB為銳角三角形.
分析:(Ⅰ)求出兩個函數(shù)的導數(shù),即得切線的斜率,令這兩條切線的斜率相等,此方程無解,故這兩條切線的斜率一定不相等,得到直線l1與l2恒相交.
(Ⅱ)用點斜式求得直線l1和直線l2的方程,求得交點P的橫坐標滿足x-t=1,又直線AB方程為x=t,直線AB垂直x軸,
故點P到直線AB的距離為 1.
(Ⅲ)利用兩個向量的數(shù)量積的定義、數(shù)量積公式可得∠B恒為銳角,且∠A恒為銳角,令 分別小于0、等于
0、小于0,求出對應的t值,即得所求.
點評:本題考查導數(shù)的幾何意義,點到直線的距離公式,兩個向量的數(shù)量積的定義,數(shù)量積公式,三角形形狀的判定,體現(xiàn)了分類討論的數(shù)學思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=mx-2+
2
-1
(m>0,m≠1)的圖象恒通過定點(a,b).設橢圓E的方程為
x2
a2
+
y2
b2
=1
(a>b>0).
(1)求橢圓E的方程.
(2)若動點T(t,0)在橢圓E長軸上移動,點T關于直線y=-x+
1
t2+1
的對稱點為S(m,n),求
n
m
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①已知
a
=(3,  4), 
b
=(0,  1)
,則
a
b
方向上的投影為4;
②若函數(shù)y=(a+b)cos2x+(a-b)sin2x(x∈R)的值恒等于2,則點(a,b)關于原點對稱的點的坐標是(0,-2);
③函數(shù)f(x)=
1
lgx
在(0,+∞)上是減函數(shù);
④已知函數(shù)f(x)=ax2+(b+c)x+1(a≠0)是偶函數(shù),其定義域為[a-c,b],則點(a,b)的軌跡是直線;
⑤P是△ABC邊BC的中線AD上異于A、D的動點,AD=3,則
PA
•(
PB
+
PC
)
的取值范圍是[-
9
2
,  0)

其中所有正確命題的序號是
①③④⑤
①③④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x+
5
x
圖象上的動點P到直線y=2x的距離為d1,到y(tǒng)軸的距離為d2,則d1d2=
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-
1
ex
g(x)=ex+
1
ex
,動直線x=t分別與函數(shù)y=f(x)、y=g(x)的圖象分別交于點A(t,f(t))、B(t,g(t)),在點A處作函數(shù)y=f(x)的圖象的切線,記為直線l1,在點B處作函數(shù)y=g(x)的圖象的切線,記為直線l2
(Ⅰ)證明:不論t取何實數(shù)值,直線l1與l2恒相交;
(Ⅱ)若直線l1與l2相交于點P,試求點P到直線AB的距離;
(Ⅲ)當t<0時,試討論△PAB何時為銳角三角形?直角三角形?鈍角三角形?

查看答案和解析>>

同步練習冊答案