等差數(shù)列{an}中,a1=-2004,公差d=2,則(a12-a22)+(a32-a42)+…+(a20032-a20042)的值等于
4008
4008
分析:先由平方差公式把(a12-a22)+(a32-a42)+…+(a20032-a20042)等價轉化為(a1-a2)(a1+a2)+)+(a3-a4)+(a3+a4)…+(a2003-a2004)(a2003+a2004),再由等差數(shù)列的性質進一步簡化為-dS2004,由此能求出結果.
解答:解:∵等差數(shù)列{an}中,a1=-2004,公差d=2,
∴(a12-a22)+(a32-a42)+…+(a20032-a20042
=(a1-a2)(a1+a2)+)+(a3-a4)+(a3+a4)+…+(a2003-a2004)(a2003+a2004
=-dS2004
=-2×[2004× (-2004)-
2004×2003
2
×(-2)]

=4008.
故答案為:4008.
點評:本題考查等差數(shù)列的前n項和公式,是基礎題.解題時要認真審題,仔細解答,注意合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,a1=-4,且a1、a3、a2成等比數(shù)列,使{an}的前n項和Sn<0時,n的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列﹛an﹜中,a3=5,a15=41,則公差d=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)項和S2n-1=38,則n等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,設S1=10,S2=20,則S10的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在等差數(shù)列{an}中,d=2,a15=-10,求a1及Sn;
(2)在等比數(shù)列{an}中,a3=
3
2
,S3=
9
2
,求a1及q.

查看答案和解析>>

同步練習冊答案