如圖,OA是⊙O的半徑,以O(shè)A為直徑的⊙C與⊙O的弦AB相交于點(diǎn)D,求證:D是AB的中點(diǎn).
考點(diǎn):直線與圓相交的性質(zhì)
專(zhuān)題:直線與圓
分析:連結(jié)OD、BE,由圓的性質(zhì)推導(dǎo)出∠ADO=∠ABE=90°,由此能夠證明D是AB的中點(diǎn).
解答: 證明:連結(jié)OD、BE,
∵OA、OE分別是⊙C與⊙O的直徑,
∴∠ADO=∠ABE=90°,
∴OD∥BE,
∵O是AE的中點(diǎn),
∴D是AB的中點(diǎn).
點(diǎn)評(píng):本題考查點(diǎn)是線段中點(diǎn)的證明,是基礎(chǔ)題,解題時(shí)要熟練掌握?qǐng)A的基本性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x||x+1|<2},集合B={x|x2+4x≤0},則A∩B=( 。
A、[-4,0]
B、[-4,1)
C、(-3,1)
D、(-3,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=
1
2-
3
,集合A是由x=m+
3
n
,m,n∈Z組成的集合,則a與A之間是什么關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-1)2+(y-2)2=2,從圓外的一動(dòng)點(diǎn)P向圓做切線PT,T為切點(diǎn),且|PT|=|PO|(O為坐標(biāo)原點(diǎn))
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)求|PT|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a-bsin(
π
3
-4x)
,其中a,b為實(shí)常數(shù),x∈R,已知函數(shù)f(x)的值域是[1,5],求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某醫(yī)院有兩個(gè)技術(shù)骨干小組,甲組有6名男醫(yī)生,4名女醫(yī)生;乙組有2名男醫(yī)生,3名女醫(yī)生,現(xiàn)采用分層抽樣的方法,從甲、乙兩組中抽取3名醫(yī)生進(jìn)行醫(yī)療下鄉(xiāng)服務(wù).
(1)求甲、乙兩組中各抽取的人數(shù);
(2)求抽取的3人都是男醫(yī)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a1+a3+a5=21,a2+a4+a6=27,數(shù)列{bn}前n項(xiàng)和為Sn,且4Sn=3bn-a1
(1)求an,bn;
(2)當(dāng)n∈N*時(shí),求cn=
4bn+1
bn-1
的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2sinx,sinx-cosx)
b
=(cosx,
3
(cosx+sinx))
,函數(shù)f(x)=
a
b
+1

(1)當(dāng)x∈(
π
4
,
π
2
)
時(shí),求f(x)的值域;并求其對(duì)稱中心.
(2)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,若將f(x)向左平移
π
4
個(gè)單位,且b=5,f(
B
2
)=3
,求△ABC面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)(a,b)不在直線x+y-2=0的下方,則2a+2b的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案