求f(x)=
x
的定義域.
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件即可得到結(jié)論.
解答: 解:要使函數(shù)有意義,則x≥0,
即函數(shù)的定義域?yàn)閇0,+∞).
點(diǎn)評:本題主要考查函數(shù)定義域的求法,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x||x-3|+|x-4|<a},B={x||x2-6x+5≤0},若A∩B=B,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在二面角α-AB-β的棱上有A、B兩點(diǎn),直線AC、BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于AB,已知AB=4,AC=6,BD=8,CD=2
17
,則直線CD與平面α所成角的正弦值為( 。
A、
697
34
B、
3
51
64
C、
697
64
D、
3
51
34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=2aln(x+1)+x2-2x
(1)當(dāng)a>0時(shí),討論函數(shù)g(x)的單調(diào)性;
(2)當(dāng)a=0時(shí),在函數(shù)g(x)圖象上取不同兩點(diǎn)A、B,設(shè)線段AB的中點(diǎn)為P(x0,y0),試探究函數(shù)g(x)在Q(x0,g(x0))點(diǎn)處的切線與直線AB的位置關(guān)系?
(3)試判斷當(dāng)a≠0時(shí)g(x)圖象是否存在不同的兩點(diǎn)A、B具有(2)問中所得出的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求過點(diǎn)A(1,-1)且與圓C:x2+y2=100切于點(diǎn)B(8,6)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點(diǎn)E為AB的中點(diǎn).
(1)求證:BD1∥平面A1DE;
(2)求:DE與面A1D1B成角余弦值;
(3)在線段AB上是否存在點(diǎn)M,使二面角D1-MC-D的大小為
π
4
?若存在,求出AM的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Γ的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
3
2
,且過拋物線C:x2=4y的焦點(diǎn)F.
(1)求橢圓Γ的方程;
(2)設(shè)點(diǎn)F關(guān)于x軸的對稱點(diǎn)為F′,過F′作兩條直線l1和l2,其斜率分別為k、k′,滿足k>0,k+k′=0,它們分別是橢圓Γ的上半部分相交于G,H兩點(diǎn),與x軸相交于A,B兩點(diǎn),使得|GH|=
16
5
,求證:△ABF′的外接圓過點(diǎn)F;
(3)設(shè)拋物線C的準(zhǔn)線為l,P,Q是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足∠PFQ=
π
2
,線段PQ的中點(diǎn)為M,點(diǎn)M在l上的投影為N,求
|MN|
|PQ|
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-1,0)、B(1,0),直線AM與BM相交于點(diǎn)M,且它們的斜率之積為-2,
(1)求動(dòng)點(diǎn)M的軌跡E的方程;
(2)若過點(diǎn)N(
1
2
,1)的直線l交動(dòng)點(diǎn)M的軌跡于C、D兩點(diǎn),且點(diǎn)N為CD的中點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),中,F(xiàn)1,F(xiàn)2分別為左右焦點(diǎn)A1,A2,B1,B2分別為四個(gè)頂點(diǎn),已知菱形A1B1A2B2和菱形B1F1B2F2的面?zhèn)積分別為4
3
和2
3

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓C的右頂點(diǎn)A2作兩條互相垂直的直線分別和橢圓交于另一點(diǎn)P,Q,試判斷直線PQ是否過定點(diǎn),若過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由.

查看答案和解析>>

同步練習(xí)冊答案