(2012•河南模擬)已知點(diǎn)F1、F2分別是橢圓
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左、右焦點(diǎn),A、B是以O(shè)(O為坐標(biāo)原點(diǎn))為圓心、|OF1|為半徑的圓與該橢圓左半部分的兩個(gè)交點(diǎn),且△F2AB是正三角形,則此橢圓的離心率為(  )
分析:根據(jù)A、B是以O(shè)(O為坐標(biāo)原點(diǎn))為圓心、|OF1|為半徑的圓與該橢圓左半部分的兩個(gè)交點(diǎn),且△F2AB是正三角形,確定|F1A|=c,|F2A|=
3
c
,再利用橢圓的定義可得結(jié)論.
解答:解:由題意,∵A、B是以O(shè)(O為坐標(biāo)原點(diǎn))為圓心、|OF1|為半徑的圓與該橢圓左半部分的兩個(gè)交點(diǎn),
∴|OA|=|OB|=|OF2|=c
∵△F2AB是正三角形,
|F2A|=
3
c

∴|F1A|=c,
∵|F1A|+|F2A|=2a
(1+
3
)c=2a

c
a
=
2
1+
3
=
3
-1

故選A.
點(diǎn)評(píng):本題考查橢圓的性質(zhì)和應(yīng)用,考查橢圓的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河南模擬)如圖,在四棱錐P-ABCD中,側(cè)棱PA⊥底面ABCD,底面ABCD為矩形,AD=2AB=2PA,E為PD的上一點(diǎn),且PE=2ED,F(xiàn)為PC的中點(diǎn).
(Ⅰ)求證:BF∥平面AEC;
(Ⅱ)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河南模擬)己知i為虛數(shù)單位,則
i
1+i
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河南模擬)已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,若c=2,b=
3
,A+C=3B,則sinC=
6
3
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河南模擬)若函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=x2-4x+3,則使得函數(shù)f(x-1)單調(diào)遞減的一個(gè)充分不必要條件是x∈( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河南模擬)選修4-5:不等式選講
設(shè)f(x)=2|x|-|x+3|.
(1)求不等式f(x)≤7的解集S;
(2)若關(guān)于x的不等式f(x)+|2t-3|≤0有解,求參數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案